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Abstract

In this paper, we consider a time-headway model, introduced in Ref. [Physica A 296 (2001)
320], for buses on a bus route. By including a simple no-passing rule, we are able to enumerate
and study the unstable modes of a homogeneous system. We then discuss the application of
the model to realistic scenarios, showing that the range of reasonable parameter values is more
restricted than one might imagine. We end by showing that strict stability in a homogeneous
bus route requires careful monitoring by each bus of the bus in front of it, but in many cases
this is unnecessary because the time it takes for the instability to appear is longer than a bus
would normally spend on a route.
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1. Introduction

While there has been much interest in the study of automobile tra9c (for a review,
see Ref. [1]), there have been few corresponding studies of buses [2–5]. The dynamics
of a bus route, while having some similarities with that of automobile tra9c, di<ers
due to the added interaction of buses with passengers at designated bus stops. A good
reason for studying the dynamics of bus routes is that they are so often unstable.
Buses are initially spaced at regular intervals. However, if one bus is delayed for some
reason, it will =nd a larger number of passengers waiting for it at subsequent stops,
delaying it further. Meanwhile, the bus following =nds fewer passengers waiting for it,
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allowing it to go faster until eventually it meets up with the delayed bus. Clusters of
three, four, or more buses have been known to form in this manner, resulting in slower
service.
In Refs. [3,4], Nagatani presents a time-headway model for buses. Using linear

stability analysis, he is able to determine the range of parameters over which the
homogeneous solution (i.e., with buses spaced evenly apart) is unstable. In this paper,
we make a more thorough investigation of Nagatani’s model. We demonstrate the
existence of three types of phase diagrams, in which the behavior of the bus system
is divided into four separate categories. We conclude with a discussion of how this
model may be applied to real-world situations, and the limitations imposed by practical
considerations.

2. Model

We consider the following model, introduced in Ref. [4], of buses on a bus route
(Fig. 1). Bus stops are labelled by s= 1; 2; : : : where stops s and s+ 1 are a distance
L apart. There are J buses, j=1; : : : ; J , which travel from stop to stop, with bus j=1
in the lead and bus j = J in the rear. Every bus visits every stop, and buses do not
pass one another. The time at which bus j arrives at stop s is tj; s, which is given by
the recursive relation

tj; s − tj; s−1 = �	
tj; s−1 +
L

Vj;s−1
; (1)

where


tj; s ≡ tj; s − tj−1; s (2)

is the time-headway, the time gap in front of bus j at stop s. The =rst term on the
right-hand side of Eq. (1) is the time it takes for passengers to board the bus at stop
s− 1. The parameter � is the rate at which passengers arrive at a bus stop; �
tj; s−1 is
the number of passengers that have arrived at stop s−1 since the previous bus left. The
parameter 	 is the time it takes for each passenger to board the bus, so �	
tj; s−1 is the
amount of time needed to board all of the passengers. For convenience, we introduce
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Fig. 1. Schematic illustration of the model.
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the dimensionless parameter � ≡ �	, which we call the passenger rate. For simplicity
we ignore the passengers getting o< the bus; we will assume that it takes less time for
the passengers to get o< than it does to get on and pay the fare.
The second term in Eq. (1) is the time it takes for bus j to travel from stop s−1 to

stop s, where Vj;s−1 is the average velocity of the bus between stops. If this velocity is
constant, then the tendency for buses to bunch together, as described in the introduction,
has no counterweight, and a steady :ow of buses will always be unstable (unless there
are no passengers). It is reasonable to assume, however, that a bus driver will try to
prevent bunching by slowing down when the gap between his bus and the next is too
small. One can model this by writing the average speed Vj;s as a function Ṽ (
tj; s) of
the gap between his bus and the bus in front of him:

Ṽ (
t) = vmin + (vmax − vmin)
tanh!(
t − tc) + tanh!tc

1 + tanh!tc
: (3)

The hyperbolic tangent factor acts as a spread-out step function, centered at tc with a
width proportional to 1=!. The parameter vmax is the speed a free bus (i.e., one that
is alone on the route) would travel. On the other hand, vmin is the speed a bus travels
if it has completely caught up with the bus in front of it. For example, if vmin = 0
then a bus which has caught up with the bus in front of it will stop and wait until its
predecessor has cleared the next stop before proceeding.
In what follows, it is convenient to work with the time headways 
tj; s, rather than

the arrival times tj; s. It is also convenient to rewrite our expressions in terms of di-
mensionless quantities. In doing so, we =nd that there are four signi=cant parameters,
not including initial conditions. The =rst such parameter is the passenger rate �. The
other three are �=L!=vmax, �= vmin=vmax, and �=1− tanh!tc (which will typically be
small). We will also consider the dimensionless variable Jtj; s =!
tj; s and the dimen-
sionless velocity function V (Jt) = Ṽ (Jt)=vmax. Our evolution equation Eq. (1) now
reads

Jtj; s −Jtj; s−1 = �
[

1
V (Jtj; s−1)

− 1
V (Jtj−1; s−1)

]
+ �[Jtj; s−1 −Jtj−1; s−1] ;

(4)

where

V (Jt) = � +
(1− �)� tanhJt

1− (1− �) tanhJt =
�(1− tanhJt) + � tanhJt
(1− tanhJt) + � tanhJt

: (5)

3. Stability analysis

We are interested in the stability of a homogeneous :ow of buses, with Jtj; s =
Jtj;0 = Jt0. One can easily verify that this is a solution to Eq. (4). We introduce a
small perturbation to the initial homogeneous solution: Jtj; s = Jt0 + yj;s, where yj;s



264 S.A. Hill / Physica A 328 (2003) 261–273

0

0.5

1

1.5

2

0 1 2 3 4 5 6

µ

∆t0

α=0.5, β=0.25, ε=0.036

0

0.5

1

1.5

2

0 1 2 3 4 5 6

µ

∆t0

α=1, β=0.25, ε=0.036

0

0.5

1

1.5

2

0 1 2 3 4 5 6

µ

∆t0

α=1, β=0, ε=0.036

(a) (b) (c)

Fig. 2. (a–c) Phase diagrams indicating the regions of stability of Eq. (6), for three representative values of
the parameters. The shaded area is the region which satis=es Eq. (8).

is small. To =rst order, Eq. (4) becomes

yj;s − yj;s−1 = [yj+1; s−1 − yj;s−1][F(Jt0)− �] ; (6)

where we have introduced the convenient abbreviation

F(Jt0) ≡ � V
′(Jt0)

V (Jt0)2
=

�(1− �)�(1− tanh2Jt0)

[�(1− tanhJt0) + � tanhJt0]2
: (7)

It can be shown [4] that the perturbation is stable if

F(Jt0)− 1¡�¡F(Jt0) : (8)

From Eq. (8) we can construct a phase diagram (Fig. 2) for the stability of an
initially homogeneous bus route, based on the initial spacing Jt0 and the passenger
rate �. The stable region in phase space is bounded by the curves � = F(Jt0) and
� = F(Jt0)− 1. Because of the added constraint that �¿ 0, there are di<erent phase
diagrams depending on whether F(Jt0)− 1 is ever positive (Fig. 2a) or not (Fig. 2b).
The curve F(Jt) has a maximum value of

�
(1− �)
2� − � at x = 1− �

�
; (9)

so the phase diagram resembles Fig. 2a whenever

�¿
2� − �
1− � ≈ 2�

1− � : (10)

A third phase diagram, Fig. 2c, arises when vmin = 0, as it is in Fig. 3 of Ref. [4]
(although apparently not in Fig. 8 of the same reference, which may account for the
discrepancy between those two phase diagrams).
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4. Simulation

To study the ways in which the system becomes unstable, we evaluate Eq. (4)
iteratively in s. Our initial condition is

Jtj;0 = Jt0 + 0:1rj ; (11)

where rj are random numbers chosen between −1 and 1. For each combination of
initial headway Jt0 and passenger rate �, we run the simulation until either (a) we
reach stop s = 5000, or (b) one or more of the bus headways exceeds Jt = 1000 (in
which case the system has become unphysical).
In this paper we consider two di<erent boundary conditions. The =rst is periodic in

the bus number j; so for example Jt1; s= t1; s− tJ; s. This is convenient numerically, and
it creates translational symmetry, but it is hard to construct a physical model which
begins with this characteristic. We also consider a =xed boundary condition, where
Jt1; s =Jt0. Since the velocity of a bus depends entirely on Jt, this corresponds to a
scenario where the initial bus (j = 1) moves at a constant speed V (Jt0). 1

The structure of the model requires that buses not pass one another; however, there
is nothing in Eq. (4) to prevent the headways Jt from becoming negative. To =x
this, we add to our simulation the rule that any Jtj; s ¡ 0 is replaced by Jtj; s = 0.
This corresponds to a situation where drivers are forbidden (or unable due to road
conditions) to pass one another. 2

Fig. 3 shows the results of our simulation runs for a typical set of parameters
(� = 1, � = 1

4 , � = 1 − tanh 2 = 0:036), using both types of boundary conditions. In
both cases, the phase space is divided into four regions, corresponding to four types of
runs.

4.1. Stable runs

Most of the runs within the stable region, as de=ned by Eq. (8), remain homo-
geneous. In the periodic case, the initial :uctuations in Jtj settle into a small pre-
cessing sinusoidal perturbation which decays exponentially with time (Fig. 4). In the
=xed case, the system quickly locks onto the constant solution Jt = Jt0 with no
:uctuations.

4.2. Explosive runs

Most of the runs lying above the stable region quickly develop an unphysical
instability. This takes the form seen in Fig. 5, independent of boundary condition:
those headways lying above the mean increase exponentially, while those lying below

1 A more realistic boundary condition may involve ramping up the passenger rate � over time, as occurs
during the course of a normal day.

2 An alternative solution which we do not consider here is to allow buses to pass one another. This could
conceivably be done by replacing all Jtj ¡ 0 with |Jtj|, e<ectively swapping the labels of buses that pass
one another. We have not considered whether this would work in practice, however.
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Fig. 3. Phase diagram for bus systems with (a) periodic and (b) =xed boundary conditions, where � = 1,
� = 1

4 , and � = 0:036. The horizontal axis is the initial time headway Jt0, while the vertical axis is the
passenger rate �. Stable runs (Section 4.1) are marked by circles (©) and exploding runs (Section 4.2) by
exes (×). Oscillatory solutions (Section 4.4) are marked by squares ( ); diamonds (♦) mark runs which
started like oscillatory solutions but ended up :at. Slowed solutions (Section 4.3) with clusters are marked
by upward-pointing triangles (�) and slowed solutions without clusters by downward-pointing triangles (�).
The gray shading shows the region where F(Jt0)− 1¡�¡F(Jt0).
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decrease steadily until they reach zero. An observer stationed at a stop far down the
line will see clusters of buses arriving after long waits; far enough down the line, these
waits become astronomical, which is absurd. Clearly this model is insu9cient to deal
with these runs at long times.



S.A. Hill / Physica A 328 (2003) 261–273 267

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80 90 100

∆t
j

bus j

s=2
s=4
s=6
s=8

Fig. 5. An extreme example of an explosive run, with �= 1:9 and Jt0 = 2:5. By stop s= 8 there are buses
which are already 1000 time units apart (where one time unit is the time it takes for a free bus to travel
from one stop to the next).

0

(∆t0=)0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80 90 100

∆t
j

bus j

stop s=5000

Fig. 6. An example of a slowed run, where � = 0:95 and Jt0 = 0:2.

4.3. Slowed runs

To the left of the stable region are runs which develop an alternative stable solution,
as seen in Fig. 6. In the case of the =xed boundary condition, these runs have two
things in common. The =rst, indicated by the vanishing of one or more headways, is
the appearance of clusters: two or more buses which travel along as a single unit. The
second is that the units, whether single buses or clusters, are homogeneously spaced,
but with a spacing that is larger than the initial spacing Jt0. It should be pointed out
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that the solutions shown here are stationary; the clusters and spacings, after they form,
do not change.
In analytic terms, these states are of the form Jtj; s =Jtj = � rj, where rj is either

0 or 1, and �¿Jt0 is a constant. It is straightforward to show that this is a solution
to Eq. (4):

0 = �
[

1
V (�rj)

− 1
V (�rj−1)

]
+ ��[rj − rj−1] : (12)

When rj = rj−1, this equation is satis=ed trivially. Otherwise, the equation takes the
form

� =
�
�

(
1
�
− 1
V (�)

)
; (13)

which we can solve numerically for � (Fig. 7). For a given passenger rate �, these
spacings � correspond precisely with those seen in simulation. Furthermore, for high
enough passenger rates—�¿ 1:199 for this set of parameters—Eq. (13) has no real so-
lutions, which explains the cut-o< in Fig. 3 between the slowed and explosive regimes.
In the case of the periodic boundary condition there are cases where the clusters

eventually break up, leaving a system of buses which are equally spaced, but with the
larger spacing predicted by Eq. (13). These runs are marked by downward-pointing
triangles (�) in Fig. 3.

4.4. Oscillatory runs

In the case of a run lying below the stability region in phase space, the =rst term
in Eq. (4), which is meant to resist the tendency for buses to cluster, becomes too
large. This leads to overreaction, so that two buses which arrive too close together
at one stop are too far apart at the next. The resulting behavior may be compared
to a system of underdamped oscillators. Fig. 8 shows the resulting behavior. For the
periodic boundary condition, these oscillations decay as a power law (Fig. 9), but at
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so slow a rate as to be practically permanent. With the =xed boundary condition, the
earliest buses (i.e., those with the lowest j) shed the oscillating behavior after only
a few stops, resuming a homogeneous con=guration; with more iterations, more buses
join the homogeneous regime. In some cases, such as in Fig. 10, the system reaches
a steady state with the oscillations still dominating the later buses. In other cases,
however, the system becomes completely homogeneous, as the bifurcation point seen
in Fig. 10 slips o< the right-hand side of the graph. This later e<ect may be due to
the =nite number of buses.
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5. Discussion

In our simulations we have considered a large range of values for � and Jt0.
However, these parameters should be limited by a couple of practical concerns.
The passenger rate � is de=ned as the product of the number of passengers that

arrive at a stop per unit time, and the time it takes a single person to board the bus.
Put another way, it is the ratio of the number of people that arrive at a stop to the
number of people who can board the bus in the same amount of time. This number
must be less than one; if not, then passengers arrive at a stop faster than the bus can
take them on, and the bus should never be able to leave the stop. Since 0¡�¡ 1,
only one of the two inequalities in Eq. (8) is meaningful for a given value of the
parameters (including Jt0), depending on whether F(Jt0) is larger or smaller than 1.
This suggests that if one wanted to maximize the area of the stability region in phase
space, one would do well to make sure that the lower stability curve F(Jt0)− 1 just
grazes zero, or that �(1− �) = 2� − � according to Eq. (9).
Another practical consideration puts a limit on the value of Jt0. Typically, buses are

spaced far enough apart so that the =rst bus will reach the =rst stop before the second
bus is allowed to leave, particularly if the stops are spaced fairly close together. This
is described by the inequality

Jt0¿
L

Ṽ (Jt0)
= �

(1− tanhJt0) + � tanhJt0
�(1− tanhJt0) + � tanhJt0

¿� : (14)

For the parameters we have been studying,

Jt0¿
1− 0:964 tanhJt0

0:25− 0:214 tanhJt0
⇒ Jt0¿ 1:82 : (15)



S.A. Hill / Physica A 328 (2003) 261–273 271

This cuts out much of the interesting part of Fig. 3, including the slowed runs and
almost all of the underdamped solutions. In our discrete model, the basic iteration
step is the bus stop; bus drivers are allowed to change their speed at the bus stops
and nowhere else. If the buses are several stops apart, then they have enough time
to react to one another. Otherwise, unusual situations such as the slowing case or the
underdamped case may arise.
Finally, we consider the relationship between 
t0 and tc, which is how close a bus

will come to the bus in front of it without slowing down. Consider the ratio

r =
1− tanhJt0

�
=

1− tanh!
t0
1− tanh!tc

: (16)

We can rewrite F(Jt0) in terms of this ratio:

F(Jt0) = �(1− �) r(2− �r)
[�r + 1− �r]2 : (17)

If �r=1− tanhJt0�1 (which it will be if Eq. (15) is valid, since 1− tanh 1:82=0:05),
then

F(Jt0) ≈ �(1− �) 2r
(1 + �r)2

: (18)

Now let us consider what values our parameters might take in real life. A typical
urban bus route might have L=0:5 km, vmax =50 km=h= 5

6 km=min, vmin =15 km=h=
1
4 km=min, and != 1=min; thus �= 0:6 and �= 0:3. A bus which runs every 10 min
might take on two passengers at every stop, so � = 0:2 people per minute. If it takes
	= 3 s for a person to board a bus, then � = �	= 0:01.
Consider a scenario where bus drivers only react to what they see; that is, a driver

will only slow down if she can see the next bus in front of her. It takes a free bus
L=vmax = 0:6 min to travel from one stop to the next, so a reasonable value for the
amount of warning a bus driver has is on the order of tc = 1 min. Typical bus routes
have buses which are spaced much farther apart, perhaps every Jt0 =10 min or more.
In this scenario, r=(1−tanh 10)=(1−tanh 1)=10−8, so F(Jt0) ≈ 10−8. Since �=10−2,
the stability condition in Eq. (8) is very clearly violated. For F(Jt0) to reach a high
enough value to create stability, we need in general for the ratio r to be closer to 1.
F(r) takes its maximum value when r = 1=(2�), in which case F(r) = 1=(8�) = 0:4,
which is easily larger than � in this example. Notice that, for values of tc and 
t0
greater than 1 min, r ≈ e2(tc−
t0), so for each minute’s di<erence between tc and 
t0,
r is increased or decreased by a factor of 10. It would seem that to maintain a stable
homogeneous bus route, drivers must be reacting to the bus in front of them even from
the very beginning, and can only ignore the leading bus if they have gotten far enough
behind (in which case, of course, the proper solution is to go as quickly as possible).
This is quite a stringent requirement for stability, and explains why it is so common

to see clusters of buses in large cities. It does not seem likely, however, that this
would be the case for less frequent bus service, such as when buses run once per hour.
A driver on such a route does not typically keep track of what the previous bus was
doing an hour ago, and yet one does not see clustering behavior on these low-frequency
routes. The reason for this is that the instabilities predicted by Eq. (8) may take a long
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time to become noticeable, and normal bus routes tend to have a limited number of
stops. Fig. 11 shows the number of stops that a bus route has to cover before seeing a
noticeable deviation in the initial homogeneous state. If the passenger rate is �= 0:01
as suggested in the urban case above, then the route would have to have 130 stops to
show a 1 min deviation from the homogeneous state, and 225 stops to show a 5 min
deviation. If L=0:5 km, these correspond to 65 and 112 km, longer than your average
bus route. The situation is even better when you consider that a suburban or rural bus
route might have, not 1 person for every 5 min, but maybe 1 person every 25 min, so
that � = 0:002, and we can start having bus routes with 600 or 1000 stops before the
instability becomes noticeable. This is not to say that smaller routes remain perfectly
on time, of course; just that the delays are unlikely to be due to the need to pick up
extra passengers. Since buses will typically complete the route only to turn around and
do it again, one might consider an entire day’s run to be a single route, in which case
instabilities may creep in late in the day. However, the introduction of a bus terminal,
where buses wait until a speci=c time to leave for their next trip through the route,
would have to be accounted for in this case.
In this paper, we have considered the bus route model proposed in Ref. [4]. We have

added a simple way to deal with negative time-headways (by replacing all negative
Jtj’s with zeroes), and by doing so have been able to study the unstable modes of
a homogeneous system of buses. We show that there are in fact three di<erent phase
diagrams (Fig. 2) for this system, depending on our choice of parameters, and that
in addition to the stable homogeneous state, there are three unstable modes which
the system can fall into: the explosive mode, the slowed mode, and the underdamped
mode. We then considered the application of this model to real-life bus routes. We
have shown that the passenger rate � and the initial spacing between buses Jt0 are
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greatly restricted by practical considerations, and that to guarantee stability one needs
to have bus drivers who are constantly tracking the bus in front of them, even when
that bus is at its normal distance. Fortunately, this is only necessary for bus routes
with very many stops; with fewer stops to make, a bus may be able to complete the
route before any instabilities can become noticeable.
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