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Entanglement of a Pair of Quantum Bits
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The “entanglement of formation” of a mixed stgteof a bipartite quantum system can be defined
as the minimum number of singlets needed to create an ensemble of pure states that regpre¥éats
find an exact formula for the entanglement of formation for all mixed states of two qubits having no
more than two nonzero eigenvalues, and we report evidence suggesting that the formula is valid for all
states of this system. [S0031-9007(97)03443-1]

PACS numbers: 89.70.+c, 03.65.Bz

Entanglement is the potential of quantum states to exThis interconvertibility is strong justification for the above
hibit correlations that cannot be accounted for classicallydefinition of E and characterizes it uniquely.
For decades, entanglement has been the focus of muchlt is somewhat harder to define the entanglement of
work in the foundations of quantum mechanics, being asmixed states [5], though again one can use the singlet as
sociated particularly with quantum nonseparability and thehe basic unit of entanglement and relate the given mixed
violation of Bell's inequalities [1]. In recent years, how- state to singlets. The new feature in the case of mixed
ever, it has begun to be viewed also as a potentially usefidtates is that the number of singlets requiredreatethe
resource. The predicted capabilities of a quantum comstate is not necessarily the same as the number of singlets
puter, for example, rely crucially on entanglement [2],one carextractfrom the state [6]. In this paper we focus
and a proposed quantum cryptographic scheme convertsx the former quantity, which leads to the following
shared entanglement into a shared secret key [3]. Fatefinition of “entanglement of formation” [7]. Given a
both theoretical and potentially practical reasons, it hasnixed statep of two quantum system4 and B, consider
become interesting to quantify entanglement, just as wall possible ways of expressingas an ensemble of pure
quantify other resources such as energy and informatiorstates. That is, we consider stati@s) and associated
In this Letter we adopt a recently proposed quantitativeprobabilitiesp; such that
definition of entanglement and derive an explicit formula
for the entanglement of a large class of states of a pair of P = Z pilii) (il (1)
binary quantum systems (qubits). !
The simplest kind of entangled system is a pair of qubit
in a pure but nonfactorizable state. A pair of sp%n-

particles in the singlet sta%(l 1) = 1)) is perhaps the
most familiar example, but one can also consider more E = minzpiE(lpi), (2)
general states such a31l) + B111), which may be less i

entangled. For any bipartite system in a pure state, Benndintanglement of formation has the satisfying property that
et al.[4] have shown that it is reasonable to define thet is zero if and only if the state in question can be
entanglement of the system as the von Neumann entromxpressed as a mixture of product states. For ease of
of either of its two parts. That is, ify) is the state expression, we will refer to the entanglement of formation
of the whole system, the entanglement can be definesimply as “entanglement.”

as E(y) = —Tr plog, p, where p is the partial trace Peres [8] and Horodeclat al. [9] have found elegant
of |) (| over either of the two subsystems. (It doescharacterizations of states with zero and nonzérand

not matter which subsystem one traces over; the resuBennettet al.[7] have determined the value df for

is the same either way.) What Bennett al. showed mixtures of Bell states. (These are a particular set of
specifically is the following. Considet pairs, each in orthogonal, completely entangled states of two qubits; we
the statdy). Let an observer Alice hold one member of will refer to other sets of such states as “generalized Bell
each pair and let Bob, whom we imagine to be spatiallystates.”) But the value of for most states, even of two
separated from Alice, hold the other. Thenjf) hasE qubits, is not known, and in fact it has not been evident
“ebits” of entanglement according to the above definitionthat one can even expressin closed form as a function
the n pairs can be reversibly converted by purely localof the density matrix. The exact formula we derive in
operations and classical communication imtopairs of  this Letter is proved for all density matrices of two qubits
qubits in the singlet state, where/n approachest for  having only two nonzero eigenvalues, but it appears likely
largen and the fidelity of the conversion approaches 100%that it applies tall states of this system.

Jhe entanglement of formation ef, E(p), is defined as
the minimum, over all such ensembles, of the average
entanglement of the pure states making up the ensemble
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Our starting point is a curious and useful fact about theof R are invariant under local unitary transformations of
pure states of a pair of qubits. For such a system, wéhe separate qubits, a fact that makes these eigenvalues
define a “magic basis” consisting of the following four particularly eligible to be part of a formula for entangle-
states (they are the Bell states with particular phases) [7]ment, since entanglement must also be invariant under

ley) = 1 (1 + 1)) such transformations. We now state our main result.

f ’ Theorem—Let p be any density matrix of two qubits
lea) = 7 i(111) — 1)), having no more than two nonzero eigenvalues. Agl
les) = %i(lTU + 1)), (3) be the largest eigenvalue 8{p). Then the entanglement

of formation of p is given by
E(p) = E(c); c = max0,2Apax — TrR). (8)

1 . .
where we have used spin-notation for definiteness. |rne quantityc can thus be called the concurrence of the
When a pure stat@y) is written in this particular basis, density matrixp. If p is pure, thenc reduces to the

as|y) = >, ajle;), its entanglement can be expressed iNsoncurrence defined in Eq. (6).]

a remar_kably simplg way [7] in terms of the components  p. ¢ | et lu1) and |v,) be the two eigenvectors of
a;: Define the function p corresponding to its two nonzero eigenvalues. Define
E(x) = H(% + %\/1 —x%?) for0=x=1, (4) the2 X 2 matrix 7 such thatr;; = v; - v;, where the
dot product is taken in the magic basis with no complex
conjugation: v; - v; = > {ex | v;) {ex | v;). Consider
an arbitrary pure statgys) that can be written in the

lesy = 5 (111) — 111)),

where H is the binary entropy functionH(x) =
—[xlog,x + (I — x)log,(I — x)]. Then the entangle-

ment ol ts form |¢) = alv,) + blvy). If |¢) is expressed as a four-
E(y) = E(C()), (5)  vector in the magic basis, we can rewrite Eq. (6) as
whereC is defined by C(y) = |y - ¥l, and
CZ — . . ¥ T * s i 9
C) - | Zalz | ‘ ) W)= )& - ¥) ris*rs7™],  (9)

wheres = (3,)(a b)* is the density matrix ofy) in the
(v1,v7) basis.

The quantityC, like E for this system, ranges from zero Let us define the function

to one, and it is monotonically related #®, so thatC
is a kind of measure of entanglement in its own right. flw) =Tro " Tot"] (10)

It is sufficiently useful that we give it its own Name: for any density matrixo expressed in thev(,v,) basis.
concurrence As we look for a pure-state ensemble with £ Eq. (9)f(w) = C%(w) if  represents a pure state.

minimum averageentanglement for a given mixed state, Now o is a2 X 2 density matrix, and as such can be

our plan will be to look fore}set of states that all have theiiten as a real linear combination of Pauli matrices:
sameentanglement, which is to say that they all have the & _ %(1 + 7 - &) where r; = Trlo;w]. Substituting
J J :

same concurrence. ; ; ; :
. . this form into Eqg. (10) gives us an expression
Two other facts about the magic basis are worth a-(10) g P

highlighting. (i) The set of states whose density matrices () = %Tr [7*7] + Z riL; + Z ririMy,  (11)
arereal when expressed in the magic basis is the same as 7 i
the set of mixtures of generalized Bell states (Horodecki .
et al. have called such mixtureg“states” [10]). (ii) The with
set of unitary transformations that are real when expressed L; = % Trlo;7"7] (12)
in the magic basis (or real except for an overall phas
factor) is the same as the set of transformations that act |
independently on the two qubits. Mi; = 3 Trlo;7o;7"]. (13)
It happens that our formula foE is conveniently Thus f is defined on the surface and interior of a unit
expressed in terms of a matrkk which is a function ofp  sphere in three dimensions, the domairi of
defined by the equation M is a real, symmetric matrix with eigenvalues

R(p) = +//pp*/p . (7)  *3ldetr| and 3 Tr[r*7], andL is the eigenvector oM
. . 1 N .
Here p* is the complex conjugate ofp when it ;:orrequ?dmg to the Flgenva:jqur[r 7] ?lnceM hasl
is expressed in the magic basis: that ip} — WO positive eigenvalues and one negative eigenvalue,

. i long two directions and concave along
S, le)(e;lplei){e;l. To get some sense of the meaning/ (@) IS convex a : _
oij, noté that TrIé, ranging from O to 1, is a measure of a third. For_the purpose of this proof, we would like to
the “degree of equality” [11] between and p*, which have a function that is equal §(s) for pure states, but

in turn measures how nearly approximates a mixture convex in all directions. With this in mind we define
of generalized Bell states. Note also that the eigenvalues glw) = f(w) + %Idetrl(l?l2 - 1), (14)
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which is identical tof for pure states|f| = 1). The extra value ofg. (These two states are connectedptdoy a
term added tof(w) in effect adds a constant tband a  straight line parallel to the cylinders’ axis.) The next two
multiple of the identity matrix ta/. If we define a matrix paragraphs show that no other decompositiop dfas a
N=M+ %| detr|I (15) smaller average gr_nangle_ment than this one. .
Any decomposition op into pure states can be viewed
and a constant as a collection of weighted points on the surface of the
K = %Tr[fr*r] - %|det7|, (16) sphere in Fig. 1 whose “center of mass” is the point
representingp. The average entanglement of such an
ensemble is the average @f(,/g(s)) over the ensembile,
¢(w) =K + Z riL; + Z ririNij . (17)  since’E (yg(s)) is equal to entanglement for pure states
j ij If we can show thatE (\/g(w)), regarded as a function of
) ) w, is convex over the interior of the sphere, then it will
The added ter_m in Eg. (15) makes_all the elgenvalue%|low that this average cannot be less thEH ’_g(p)).
of N non-negative, one of them being zero. Thuis gt \ve have just seen that can be decomposed into

is a convex function. _ _Since; is an eigenve_ctor oV o pure states for which g(s) is the same ag(p),
associated with a positive eigenvalue, and is orthogonal, this will prove that the entanglement pfis equalto
to the eigenvector with zero eigenvalue, the functgpn F(/2(p)).

is constant along the latter direction. We can imagine |1 %5ct'it is not hard to prove the desired convexity.
the functiong (suppressing one dimension) as a sheet of4o function ¢(w) is parabolic with minimum value
paper curved upward into a parabolic shape; it achievegy, 5 square root is therefore a kind of cone and
its minimum value along a straight line. Moreover, one

; . L is also convex. The functiorfE(x) is a convex and
can show by direct calculation that the minimum value Ofmonotonically increasing function of. It follows, then
g is zero. In Fig. 1, we indicate surfaces along which ' f

¢ . . from the transitive property of convex functions [12] that
is constant, for a generic choice fif;) and |v,). The F (/2()) is a convex function ob.

surfaces appear as cylinders with elliptical cross sections. \na have thus found the entanglement ofand need
The mixed statep that we are considering lies on one only express it in a simpler form. Replacing with p

of these cylinders and can be decomposed into two purg Eq. (10) and using the fact that is diagonal in the

states lying on the same cylinder; that is, having the Same, ) basis, we obtain

then we can write

flp) =Tr(R?) = A2 + A3, (18)

where A; and A, are the nonzero eigenvalues &
[Eq. (7)]. Similarly, one finds that for the other term in
Eq. (14),

Hdetr|(JF> — 1) = =212, (19)

so thatg(p) = A + A3 — 2A1A,. Taking the square
root, we arrive at the result

E(p) = E(c); c =1 — Ao (20)

The expression (20) is equivalent to Eq. (8) for the case
of two nonzero eigenvalues. This completes the proof of
the theorem.

Although we have proved our result only for density
matrices with just two nonzero eigenvalues, we can report
three pieces of evidence suggesting that the formula (8)

FIG. 1. The surface of the sphere represents the set of anay hold quite_generally for a system O_f two q_ubits.
pure superpositions ofv,) and |v,), the eigenvectors op. (1) For a mixture of Bell states, mixed with proba-
The interior represents all mixed states formed from suchbilities pi,..., ps, Bennettet al.[7] have shown that
superpositions. The elliptical cylinders are surfaces of constanthe entanglement is equal t& (c), with ¢ given by
g, and their intersections with the spherical surface are therefor,ena)(o’ 2pmax — 1). BUt in this caser is equal top, SO

curves of constant entanglemenp itself lies on the vertical S .
axis, between|v;) and |v») which are at the poles. Its that our expression is equal to theirs. Thus our formula

minimum-entanglement decomposition consists of two pureaPplies also to this class of density matrices, most of
states lying on the same cylinder as which are not covered by the above theorem.
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(2) Peres [8] and Horodeclat al.[9] have provided [1] For a guide to some of the literature, see L. E. Ballentine,
a test, based on partial transposition, for determining  Am. J. Phys55, 785 (1986).
whether a given state of two qubits has zero or nonzerol2] See, for example, D.P. DiVincenzo, Scien2@0 255
E. We have applied both the Peres-Horodecki test and our __ (1995).
own formula to several thousand randomly chosen densityl3] A-K. Ekert, Phys. Rev. Lett.67, 661 (1991); C.H.
matrices and have found agreement between them in every ggngg;t,(gglg;assard, and N.D. Mermin, Phys. Rev. Lett.
case. Thatis, Eq. (8) gave > 0 if and only if the Peres- ’ '

: AL 4] C.H. Bennett, H.J. Bernstein, S. Popescu, and B. Schu-
Horodecki test indicated the presence of entanglement,[ ] macher, Phys. Rev. A3, 2046 (1996).p

which happened in roughly one-third of the cases. [5] Some alternatives to the definition we adopt, based on
(3) For each of 25 randomly chosen density matrices ~ other criteria, are given in V. Vedral, M. B. Plenio, M. A.
with nonzero entanglement, we have explored the space Rippin, and P.L. Knight, Phys. Rev. Left8, 2275 (1997).
of all decompositions of the density matrix into pure [6] C.H. Bennett, G. Brassard, S. Popescu, B. Schumacher,
states, limiting ourselves to ensembles of four states. J. Smolin, and W.K. Wootters, Phys. Rev. Lew6,
(The example of Bell mixtures [7] suggests that four-state 722 (1996); A. Peres, Phys. Rev. B4, 2685 (1996);
ensembles may be sufficient.) In each case, the result of D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello,
numerically minimizing the average entanglement of the S Popescu, and A. Sanpera, Phys. Rev. L#11.2818
ensemble agrees with the result predicted by our formula. (1996); M. Horodecki, P. Horodecki, and R. Horodecki,

Phys. Rev. Lett78, 574 (1997); see Ref. [7].
If the formula turns out to be correct for all states, [7] C.H. Bennett, D.P. Divincenzo, J. Smolin, and W. K.

it WiII'considerany simplify studi.es_ of entanglement. Wootters, Phys. Rev. /&4, 3824 (1996). The interpre-
Questions such as whether the “distillable entanglement”  (5ion of Eq. (2) in terms of the number of singlets re-

is equal to the entanglement of formation [6,7], that is,  quired is actually rather subtle. It depends, for example,
whether one can extract as much entanglement as one puts on whetherE(p ® p) is always equal t®E(p), a ques-
into the state, will presumably be easier to answer if there  tion whose answer is not yet known. In this Letter we
is an explicit formula for the latter quantity. It is also take EQ. (2) as the definition df and focus only on its
conceivable that our result can be generalized to systems evaluation.
with larger state-spaces, such as an entangled pair of8] A. Peres, Phys. Rev. Letf6, 1413 (1996). _
n-level atoms, though it is not clear whether there is any [] '\Lﬂe'ttHXrgggct'klg'gG")'orOdeCk'* and R. Horodecki, Phys.
f;)rlgctt#;ftlf:‘esr?]ggi(s:pbaai:s?: ;T:;svﬁgﬂlﬁeptlv?/)cl)-gﬂgﬁ (t:giesaT 0] R. Horodecki and M._ Horodecki, Ph_ys. Rev. 54, 1838 _
. - . L e . ) (1996); R. Horodecki, M. Horodecki, and P. Horodecki,
imagining possible generallz_atlons, itis interesting to note  ppys | ett. A222 21 (1996).
that the form ofR has much in common with the “mixed- [11] p. Bures, Trans. Am. Math. Socl35 199 (1969);
state fidelity” [11] of Bures, Uhlmann, and Jozsa, which A. Uhlmann, Rep. Math. Phy®, 273 (1976); R. Jozsa,
is in no way special to two-qubit systems. J. Mod. OpticsA1, 2315 (1994).
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