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Nonlinear hydrodynamical approach to granular materials
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We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes
the formation of a sandpile from a homogeneous distribution of material under gravity, and then discuss a
simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic
angle of repose.
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[. INTRODUCTION which the packing of the grains is ideal, having the maxi-
mum possible density. We will call these regions “close
The nature of the theory that describes the macroscopipacked.” The other, “loose-packed” regions have their
transport in granular materigl$] remains an unsolved prob- grains arranged in some nonoptimal configuration, with a
lem. We propose here a candidate theory, inspired by feaslightly smaller density. We propose that these small varia-
tures of nonlinear hydrodynami¢blH). Given its success in  tions in the density field are sufficient to describe the meta-
treating transport in a variety of complex systeffis-7,18, stable nature of sand.
NH seems natural to use in this context. In developing any Using dynamical equations based on local conservation of
continuum model of granular materials, however, one iSn']ass and momentum, thmencheq)attern in the density
challenged by the need to incorporate some remnant of thean be prepared in a dynamic process driven by an effective
discrete nature of the underlying material. free energy with minima characterizing the loose-packed and
The development of our theory is based on the hypothesigiose-packed regions. This presents the opportunity to grow
that the states of a system can be specified in terms of a few sandpile under the influence of gravity starting from an
collective variableqat sufficiently long length scalgsand initial homogeneous state, and in the construction of the
that these states are connected in time by the local conservgandpile one builds up, in a self-consistent manner, an inho-
tion laws supplemented with constitutive relations. Typi-mogeneous equation of state characterized by a nontrivial
cally, the collective variables used are the conserved densitress tensor.
ties which, in the simplest view of granular materials, are  The essential structure of our theory, based on local con-
conservation of mass and momentum. Conservation of enservation laws, is straightforward. More difficult is the inclu-
ergy is more complicated in this case than in simple fluidssjon of these competing close- and loose-packed states.
due to locally inelastic processg] which may transfer en- - Clearly these require a detailed description of the shortest
ergy into internal degrees of freedom. Although we knowlength scales treated in the model; there is a competition of
how to include the energy density into the description, welength and energy scales of a type not encountered in simple
begin with a more primitive theory that uses only the massjuids. Such a short-range description will depend on details
densityp and the momentum density. of the particular granular material; we will be satisfied with a
The key difference between simple fluids and granulatheory that demonstrates some generic properties of sand, as
materials is that fluids organize over short time scales to bédescribed in the next section. It seems reasonable that one
spatially homogeneous, while granular materials can exismay then be able to refine the model to include variations in
over very long times in spatially inhomogeneous metastabl¢he shapes and types of individual grains.
states: metastable, because individual grains do not always While the short-range length scales give difficulty, the
pack together efficiently; long lasting, because the largdarge-scale nature of our model presents us with the advan-
masses of the grains prevent thermal fluctuations from adage of a description close in scale to those phenomena that
justing particles into a tighter configuration. Any complete are most visible to experiment and casual observation. One
description of granular materials must be able to explain thelltimate goal is to address the existifig0] macroscopic
nature of thesguenchednhomogeneous states. Experimentshaking and rotation experiments. Also, such a theory should
suggests that a sandpile contains “force chaif8 which  eventually be useful in analyzing the surface states produced
serve to support the pile in the presence of external stress) large-amplitude shaking experimerftisl].
these chains are surrounded by regions of sand which are There have been a number of attemtg] to use hydro-
comparatively unstressed, and which allow the pile to flowdynamics to understand the dynamics of sandpiles. These
and to settle under vibrations. efforts differ from the one advanced here in that they do not
Since these sandpilés the absence of forcingare static, propose to follow the full evolution of the system. There has
the momentum is negligible, and we are left with the densityalso been a significant theoretical effort to describe granular
field as our sole tool in describing the pile. Our primary materials through the use of kinetic thedrd/3]. This ap-
hypothesis is that the density field alone is sufficient to capproach is organized at a more microscopic level, where the
ture the metastable nature of the system when at rest. Speennection to the macroscopic, static, metastable phase of
cifically, we describe the force chains as regions of sand ithe system is less dire¢il4] and coupling to experiment
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more difficult. In many of these cases it is necessary to “lig- (6) Granular materials are stiff: when moved or jostled the
uefy” the granular material in gquestion, giving it so much pile can for a time behave as a solid object. Thus the sandpile
energy that it loses the metastable quality that seems to kshould have a relatively uniform density.
crucial in describing certain aspects of a sandpile’s behavior. (7) One specific example of this stiffness is that a sandpile
In this paper we begin by describing some generic feacan maintain a nonhorizontal surface. For example, when a
tures of sand that we hope to incorporate into our model. weile of sand in a container is rotated about a horizontal axis,
then proceed to a development of our dynamical equaﬁong does not f!QW immediately but waits until its surfgce passes
from a generalized Langevin equation. This will lead into a@ Certain critical anglecalled the angle of reposevith the
discussion of the choice of a driving free energy, which will orizontal. According to Reynoldg6], this effect is due to

be crucial in creating the quenched pattern in the densit ne static_interlocking 9”%“”5 tha_t make up a_granular mate-
field ial: the pile must dilate first, giving these grains freedom to

To test the validity of the theory we turn to simulation on move about, before flow is possible.

a two-dimensional lattice. We begin with a rectangular box (8) It is well known that granular materials can be very
' 9 9 “sensitive to boundary and finite-size effects; the famous

containing a homogeneous distribution of sand under the N8 azil-nut-to-the-top phenomenon[17], for instance, is
fluence of gravity, and we show that it does indeed form astrongly influenced by both. ' '

sandpile with an inhomogeneous distribution of loose- and \ya “will touch on these points while developing our
close-packed states. We then turn to simulations in a circulgf,ggel.

container, first forming a sandpile using the same technique,

and then rotating the pile at different speeds. We compare lIl. DYNAMICAL EQUATIONS

the resulting angles of repose and oscillations about those

angles to corresponding experimental data in the literature. Inspired by nonlinear hydrodynamics, we begin with the
generalized Langevin equati¢h8,19

Il. PROPERTIES OF GRANULAR MATERIALS Ipo(X,1) VLR ]~ T 3) SFL(x,1)] @

ot < '

We want to construct our model to be compatible with the Op(x.1)
following aspects of granular materials. (Throughout this section, summation is implied over all re-

(1) Granular materials have a clumping property; simula-peated indice$.The variablesy, are the “slow” fields of
tions of simple systems of inelastically colliding balls pro- interest in the problem: as mentioned earlier, these are the
vide evidence for this phenomenon. One possible explanauensity fie|dp(;) and the momentum ﬁekj(;). The first
tion for this clumping is the theory dhelastic collapsd8]:  termV [ y] is thestreaming velocityand corresponds to the
when two particles collide inelastically, they lose energyreversible terms in typical hydrodynamical equations. As we
from their translational degrees of freedom and so recedgill see, it depends on the Poisson brackets of the slow
more slowly than they approach each other. On average, théelds, as well as the derivatives of the Landau-Ginzburg-
particles stay closer together than if they had collided elastiWilson effective free energf. The second term is dissipa-
cally, and regions of higher density build up. This can alsative in nature, and’ .4 is the symmetric matrix of dissipative
be described in terms of a hydrodynamical instabilit§]. coefficients. Because granular materials are essentially zero-

(2) Thermal energies in a sandpile are very small com{emperature systerm@roperty 3, there is no thermal noise
pared to, for instance, the average gravitational energy. Thudiving the system.
we should be able to ignore thermal noise. For our system, the free energycan be broken up into

(3) Because of the large masses of the grains, one doddnetic, potential, and external parts:
not expect a significant vapor pressure above the interface as
is found in liquid-gas systems. Indeed, we expevtgy di- F=Fc+FptFe. 2

lute gas of grains above the pile, whose density exhibits a ¢ thermodynamics, one has the result that the variable

Boltzmann distribution due to the effect of gravity. ; [ o Al
(4) Sandpiles are strongly driven by gravity and, becauseconjugate to the momentum density is the velocity field:

of the lack of thermal effects, the dense sandpile is separated SE g-()Z)
from the dilute gas above by a sharp interface. —— =y, X)=——, 3
(5) Granular materials are strongly disordered, with meta- 6g;(x) p(X)

stable structures forming upon creation of a pile. This is also . o o
due to the lack of thermal effects. As mentioned in the In-Wherei is a vector label. The kinetic energy contribution to

troduction, there is evidence of stress chains running througf'e free energy thus has all of the momentum dependence:
the bulk of sandpiles, which may be associated with the >

ramified clumps formed in the more dilute systems studied F :f 4953 (%) @
using kinetic theory. The important point for us is that there K zp()Z) '

is competition between somewhat more dense domains

(stress chains and archesnd other, more loosely packed while Fp andFg are functions only of the density. We will
regions in the pile. make further assumptions as to the formFef below. F¢ is
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the free energy due to external forces: for instance, in thés the viscous tensor, ang and {, are the “bare” viscosi-
presence of a uniform gravitational field ties. It is more realistic, however, for the dissipation to de-
pend on the density of the sand, and so we introduce a func-

FE:f dix gp(i)(z—zo), () tion ¢(p) into the damping tensor:
Lij=— 71 xVil&(p)Vi. (15
where the scalag is the acceleration due to gravity anglis
the bottom of a confining box. We shall say more about(p) below. It should be empha-
The streaming velocity/,, [in Eq. (1)] is given by the sized that, in a system with strong nonlinearities and spatial
equation “ inhomogeneity such as ours, there exists no simple relation-
ship between these bare viscosities and their physical coun-
SE terparts.
Vol l//]:{l//a,l/fﬁ}é—%, (6) We can now write the remaining Langevin equation:
L N (9g| oF
where the indicesr, 3 run over the sefp,gj. We calculate Ezvgi—l“gigjg—g
the Poisson brackets by identifying the fiells with micro- !
scopic variables, evaluating their Poisson brackets, and ex- 5Fp gi
; ; . i
pressing the results in terms of tife,, getting the standard =—pVi—=——p90,—V;j(9i9j/p)—Ljj—. (16
op p
results[19]

. - - At this point, we must choose a form fdétp. In this
{p(x),9i(X")}==Vi[8(x=x")p(X)] (7)  simple theory, we make the assumption tFat is of the

square-gradient form
and

1
{91(3),9;(x")}= = V[ 8(x=x")gi(0)] FP:f d’x f(p)+EC(Vp)2}’ (17)

+Vi[a(x=x")gj(x)]. ® wheref(p), the free energy density, is a local functionggf

With these and the appropriate derivatives of the free energﬁndc 's & positive constariR0]. Thus we have

we can calculate the streaming velocities ag; of
o —r = PVi-+epViVip—Vi(gig;/p)
V,==V-g 9 P
and + 7ij1aVil d(p) V(91 /p)]1—09p i, . (18)
R R It should be noted that we can rewrite this equation as the
v (»)V OFp (a) 5y gi(x)g;j(x) divergence of a stress tensor plus a term representing exter-
==p(X)Vi—=——p(X)90;;— V|| —=— :
g~ P (%) p(X)90iz— Vj ) o nal forces:
1
(9 .
: : : - &:_VJUiJWLFiE- (19
By choosingl’,;=0, one easily obtains the usual continuity ot
equation . o . .
This is the usual continuity equation for conservation of mo-
ap .. mentum, just as our expression for the density’s evolution is
- Vo (11 the continuity equation for conservation of mass.

For calculational reasons, we prefer to work not with the

The components of the damping tensor associated with th@lomentag, but with the velocity fields, defined by Eq(3)
momentum density, above. In terms of the density and velocity fields, the equa-
tions of motion become

Lij Erg_g_, (12)
- LS 20
can be expressed in terms of the viscosityL lfvere inde- ot (pv) 20
pendent of the fluctuating fields, then we could write it in the
general form and
Lij= =7k V1Vk, (13 i 2
g %) W——Vi%+cViV p—UjVJ'Ui
where
1
it k= M0( 8t S+ S ) + (Lo~ 5710) 86 (14) +;ﬂ‘j'k'vj[(ﬁ(p)vkv']_ggiz' (21)
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FIG. 1. Three steps to our free energy dengi@y:with no metastability{b) with a barrier to create metastability; afj with wells to
stiffen the material.

To proceed further, one needs to choose formsfigr) and  enough of a push so that some regions may pass the barrier
the viscosities. For very low densities we expect that theand reach the minimum of the potential.
dissipative part of the equation should vanish; for this to This potential has all of the right features, but in simula-
happen,¢(p) must go to zero at least as fast@s Higher  tions it proves to make a sandpile that is too soft and liquid-
powers ofp seem to make our numerical calculations morelike. To stiffen the pile, we introduce two wells, as in Fig.
stable, so we have usefi=p*. This issue is not very impor- 1(c): one for the close-packed and one for the loose-packed
tant in the dense sandpile whepe~1. We choosel, states. With the wells, this is the free energy we have used in
=3 7o in Eq. (14) so thatz;;  is isotropic: our calculations. Future possible modifications to this free
energy will be discussed in our conclusion.
7ij k1= 70( 8ij O + S Sj1 + 81 Sjk ). (22

. . L e V. NUMERICAL ANALYSIS
In this theory, the input most crucial in specifying sand-

like behavior is the free energy densftfp). With an appro- Because the proposed model has a strongly nonlinear na-
priate choice off we will be able to create a system that is ture, we are forced to study this system’s evolution numeri-
very different from conventional fluids. cally, hoping that this will inspire subsequent analytical
work. The first order of business is to determine numerically
IV. CONSTRUCTING THE FREE ENERGY DENSITY whether this system of equations, running forward in time,

can prepare a state that looks like a sandpile. In principle,

We will construct the free energl(p) using three steps, this should be straightforward to do. In practice, there are a
as outlined in Fig. 1. The mathematical details of the descripnumber of difficulties in putting these partial differential
tion of the free energy can be found in the Appendix. We carequations onto a space-time lattice.
think of f(p) as a potential where the system picks out val- (1) Lattice spacinglt is understood that, to solve partial
ues of the density which correspond to minimafof key  differential equations numerically, one must keep the time
assumption is that, from property 1, grains of sand tend tstep much smaller than the lattice size; otherwise, the system
clump together, and so the potential has a minimum whictdevelops physical instabilities. We have chosen a typical
we arbitrarily place ap=1. The grains themselves are in- convention of settingAx=1 andAt=0.001.
compressible, so the potential rises rapidly for densities (2) We know that there are importafihite-size effectm
higher thanp= 1. Similarly, the potential becomes large as granular systems, and so we must be prepared to examine
one approaches zero density, to prevent unrealistic negativaur model in various sizes and shapes of containers. This
values of the density anywhere in the pile. paper focuses on two such containers: a rectangle 200 units

Calculations show that this potential, so far, is enough tchigh and 100-units wide, and a circle with a 100 unit diam-
capture some properties of sand: the sharp interface of ater. Other containers have been tried as well, yielding simi-
sandpile, for instance. However, it is still missing one keylar results.
element, and that is the metastability found in experiment. (3) One of the discouraging aspects of this approach is the
Any pile formed using this free energy would be homoge-large number oparametergoverning the system. There are
neous in density, and show no evidence of the close-packguhrameters to control the intrinsic free energy and the
and loose-packed regions mentioned in property 5. Withousquare-gradient energy, as well as those for external forces
these regions, our material would be little more than dike gravity. There is the finite size of the box and the nature
slightly compressible liquid. of the boundary conditions. Dynamically, there are the vis-

In Fig. 1(b), we introduce this metastability into the sys- cosities and the initial levels of the density and velocity
tem by placing a barrier into the potential just to the left of fields. In this paper, the values of these parameters have been
its minimum. We now have the following picture: the mini- chosen to obtain structures that resemble sandpiles. Most of
mum represents the optimal packing for the sand grains. Athese choices are reported in the Appendix where the form of
sand comes together, it increases the density of the pile untihe free energy is described in detail; in addition, we take
it reaches the density of the barrier where it is frustrated: it=10 and ,=12. Further work is needed to map out the
can no longer proceed to the optimal packing. However, asange of parameters for which we obtain physical behavior,
the sand begins to pile up, pressures in the pile can providend determine which parameters are ultimately important.
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25

—— turbations in the system. Because mass is conserved and be-
cause the density inside the formed pile should have a den-
o0 | A | sity about 1, we expect the interface to form in the middle of

[ the box, aroundz=100. In principle, one should average
over ensembles of initial conditions. That is not necessary
for our purposes here, but will become important in more
quantitative work.

The first question is whether the model captures the over-
all dynamics of the system: our physical picture of the situ-
ation has the sand particles all under the influence of gravity,
so at first there will be a net acceleration. As particles begin
to hit the bottom of the container, their velocity drops to
zero, and the system as a whole decelerates until it ends up at

o 5 10 15 20 25 30 35 40 45 50 rest. To see if this is true we measure the average kinetic
time energy

15 |

Kinetic Energy

10 |

FIG. 2. Kinetic energies fog=1 andg=0.5. 1
Exn=y 2 P(2X)0%(2X), (23
(4) This numerical problem would be rather straightfor- zx
ward if not for a set of persistent unphysidaktabilities . ) i
without care the system can and will explode in a very un-where the sum is over the entire box, awdis the total
natural fashion. These explosions are of two closely relate@umber of lattice sites. Figure 2 shows a plot of the kinetic
types:runaway velocitiesndnegative densitie§o alleviate ~ €nergy for two runs with different gravitational accelerations.
the first, we have taken the pragmatic step of locally averagl? both cases the behavior is just as expected, with an imme-
ing the velocity if it gets larger than some empirically deter-diate acceleration followed by a deceleration to rest. Also
mined cutoff. interesting to note is the difference between the curves: the
Our free energy density has been designed with a barridtn With stronger gravity causes the pile to form faster, with
at p=0, but negative densities do tend to show up in ou@_h_lgher maximum kinetic energy resulting from the higher
calculations, specifically in the dilute region above the sandinitial potential energy of the system.
pile. We take two steps to counter them: when the density of 10 get a clearer picture of the stationary state our system
a site is small and positiven( 0.05), we average the site’s S Settling into, we consider the density profile
velocity with half of the neighbors’ average velocity. In ad- 1
dition, when the density dips below zero, we bring in density _
from its four neighbors to bring it above zero. In treating P(z)= N_X ; p(z.X), (24
these instabilities, we have been very careful not to violate

conservation of mass. whereN, is the number of sites across the lattice. Figure 3

superimposes snapshots of this profile at seven instances in
time. Initially, the profile is a flat liné®(z) =0.5, represent-
, ._ing the initial homogeneous distribution. As time progresses,
.AS a first exa}mple c.)f h.OW.OW model works, we beglnthe density begins to increase for I@vindicating pile for-
W'th a nearly unlform distribution of.sand which, under the mation; at the same time, the density at higher altitudes is
mflue_nce of gravity, _form_s a sandp_|le at _the bottom of th_igecreasing. Byt=30 the system has settled into a phase-
cqntamer. Our con_talner is a Fwo-d_lmensmnal box,_over_la| eparated system of high-density pile below and low-density
with a square _Ia_lttlce 100 units wide and 20(_) units hlgh.ugas,. above, with a sharp interface between the tggree-
Boundary conditions on the walls of the contam(Er are non~Ing with property 4 in Sec. JI
slip. Our initial conditions arep=0.5+Ap and v=Av, The height of the pile can be defined as that value fof
whereAp and Av are both smal(0.001 rm$ random per-  which the profile reache(z) =0.5, or half the average den-

VI. FORMING A SANDPILE

12 T T T T T T T T
1 L S . Wy
0.8 '\ \% ) 80 FIG. 3. The profile of the pile
T o6t "% o 250 e o for g=0.5, t=5,10,15,2080,40
T = 50. The variablez represents the
0.4 3‘ 4 T height above the bottom of the
02 k b \ i container, which is at=0.
5,‘ \
0 1 1 1 1 1 l‘h :

1 i 1 ol

20 40 60 80 100 120 140 160 180 200
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higher than the midpoint between the base and the interface
of the pile, suggesting that the pile may be somewhat top
heavy, but this effect is negligible.

Since on the large-distance scale our system looks like a
sandpile, we turn our attention to the small-scale features
inside the pile. Specifically, we want to investigate the com-
peting regions of loose-packed and close-packed states, men-
tioned in property 5 of Sec. Il, corresponding to the two
wells in the free energy. Recall that these wells are separated
by a barrier, which we have placed @t 0.99; for definite-
ness, we say that all sites with>0.99 are close packed and
all sites with 0.85<p=<0.99 are loose packed.

In Fig. 5 we count the number of loose- and close-packed
sites as a function of time, for two different strengths of
gravity. Naturally, the loose sites start to form first; some of
these are then pushed across the barrier and become close

FIG. 4. The location of the interface, and the vertical componenrpacked due to the weight of sand on top of them. Both
of the center of mass, f@g=0.5. The interface does not really exist graphs show the numbers of loose- and close-packed sites

until a pile begins to form, so we did not begin measuring the
location of the interface until some time after 5. The sharp peak
in the interface’s curve occurs when the small bump to the right i

Fig. 3 hits the forming pile below.

sity of the pile[21]. This is plotted as a function of time in
Fig. 4, along with the vertical coordinate of the system’s

center of mass,

> zp(z,x)

X,Z

XEZ p(z2,X)

Zcm=

(25

with the sums over all the points in the lattice.

At first the center of mass moves downward in time para
bolically, as it should with the system in free fall. As the
sand starts to pile up, less and less of the sand is in moti
and the center of mass approaches a constant height of 50

approaching a constant as the pile settles. Notice that the
final ratio of low-density to high-density sites is sensitive to
Irlparameters such as gravity: a stronger gravitational field has
a greater capacity to compact the sand and create more close-
packed sand.

Figure 6 shows how these loose- and close-packed re-
gions are distributed through the pile for the same two values
of g. The top halves of each pile share similar features: both
have a layer of loosely packed sand on top, where there is no
other sand to weigh it down and compress it. Immediately
below the surface in the center there is a region of tightly
packed sand, which dips farther below the surface in the
center of the pile than to either side. This region is flanked by
columns of loosely packed sand, which are in turn flanked by
dense sand up against the edges of the box. The differences
in the two piles are mostly at the bottom: the run with less
gravity is mostly loose packed in the bulk of the pile, while
OWe run with more gravity is tighter. Note, however, that in

ither case is the density uniform: one can find patches of

both types in both piles.

The height of the interface moves contrary to this, of course,

settling in at 100, halfway up the container. This is just
where we would expect it to be: we began with a uniform
distribution of density 0.5, and the density of the loose-
packed and close-packed wells are near 1, so the average
density of the pile should be approximately 1, and the con-

VIl. ROTATING A SANDPILE
A. Setup
One of the standard ways to probe a granular system is to

tainer should be half full. The center of mass is slightlyrotate it about some horizontal axis. This method demon-

g=1 .0

close-packed

FIG. 5. Number of loose-
packed and close-packed states for
g=0.5(left) andg=1.

loose-packed ]

g=0.5
35 45
loose-packed
30 k- ] 40
35
25 —
30
) [}
E 20 - close-packed ]| :'% 25 -
) 15 F 1 o 2r
10 sr
10
5 b 5k
0 1 L) 1 1 1 1 1 1 s
5

10 15 20

25 30 35 40 45

50
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g=05 g=10

FIG. 6. Pattern of loosé&gray)
and close (black states forg
=0.5(left) andg=1.

strates several characteristics of a granular material, and th&e grow a sandpile here as we did before: Fig. 7 shows the
most important of these is the angle of repose. Actuallypattern of loose- and close-packed states in a pile formed in
there are(at leas} two such angles associated with rotation. our circular container.

If one begins with sand in a cylindrical container, having a To best mimic rotation under experimental conditions,
horizontal free surface, and then begins to rotate the cylindepne would ideally set up rotating boundary conditions, giv-
about its axis, the surface of the sand will increase in slopéd a constant velocity to the sand at the edge of the con-
along with the container’s rotation until it reaches some criti-tainer. This has turned out to be difficult to do in practice:
cal slope, at which point an avalanche will restore the surfac@n€ reason is that, due to the lattice, our boundary is not a
to a more horizontal state. This we might call a “static” Perfect circle, and there is a tendency for mass to “leak” in
angle of reposed.. If one continues to rotate the cylinder, or out of the boundaries when the boundary conditions are

then one of two things will happen. If the rotation is slow not s_trictly noslip. Because (.)f this, we choose_ to implement
enough, then the flow along the surface will come to a sto rotation by rotating gravity with a constant period of rotation

before a further increase in slope should cause an avalancheé
P To look for an angle of repose we need to measure the

again. The result is a periodic, intermittent flow, and theangle that the interface makes with the horizoftiat is, the
interface oscillates about some average angle. If the rotatiof a1 to gravity. The most direct way to do this is to’fit the
is faster, the flow from the first avalanche does not have timé,arface of the pile with a line, and measure the angle that
to stop before the next avalanche begins. The system setilg§s |ine makes with the horizontal. This is indeed one of our
into a state where there is a continuous flow along the sufyropes: we define as our interface those points in the pile

face, and the interface maintains a constant angle with the,~ 0 5) that have a nearest neighbor outside the pile, and,
horizontal. In both cases, we may take the mean angle tha{)

the surface makes with the horizontal over time and call it a
“dynamic” angle of repose,f;. In the periodic case, a
guantity as important as the angle of repose is the size of the
fluctuation about that angleyy. The actual values of these
angles seem to depend experimentally on a number of fac-
tors, including particle size and shape, the humidity of the
air, how the pile is formed, boundary conditions, and so
forth. The experimental results of Jaeggral. [22], for in-
stance, find that spherical glass beads with diameters of
about half a millimeter show a dynamic angle of repose of
26°, with a fluctuation of 2.6°; while rough aluminum oxide
particles with the same diameter show a higher angle, 39°,
with a fluctuation of 5°. These seem to be typical values.
What will be most important in our qualitative analysis is
that these angles exist and are non-negligible. FIG. 7. Pattern of looségray) and close(black) states forg
We set out to find evidence of these two angles in our=1 in a circular container. It is interesting that this looks more like
model. To better match experiments in this field, we movene lower-gravity distribution in the rectangular box, in Fig. 6, with
from a rectangular box to a circular one having a diameter o& clump of high density floating on top of a low-density sea. This is
100 lattice sites and the same no-slip boundary conditiongrobably due to the smaller amount of total mass in this system.
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16

Surface angle —— havior is similar: as the container turns, the interface’s slope
14 " - PRI L G increases, until its angle reaches some maximum and begins
12 ,A‘ e e e to decline due to one or more avalanches. Clearly, there is a
H ‘ b " : static angle of repose here, which depends on the rotation
speed. Notice, however, that if there were no activity in the
sandpile before the first maximum in the angle, then the
curve would follow the straight line denoted in the figure as
“solid” until turning downward. Instead, it seems that the
surface is losing slope, lagging behind the container, from a
very early time: there is some preliminary flow in the pile,
even before the first major avalanche.
5 o G =5 G =5 00 Figure 10 contains six snapshots of the flow during this
time initial period, withT=200. All of the pictures here are in the

FIG. 8. The behavior of the surface and bulk angles for a typicafaPoratory framethat is, gravity's framg so the first picture
run (T=200). Notice the overall similarity in the shape of the two (t=4) shows the pile moving in unison with the container,
plots, although the bulk angle has a much smoother curve. The buls if it were a solid and fastened to the walls.tAt8, how-
angle is consistently above the surface angle, suggesting that trever, things are beginning to change: the center of rotation
pile has an asymmetric shag@ll angles are measured in degrges. seems to have moved to the right and downward, and the
sand coming up on the right side is beginning to curve over
to reduce boundary effects, we throw out those points thafp the left. The result of this action is seen in the next picture,
are not within one-half radius from the center. ~where there is a definite flow along the surface of the pile.
This method should be ideal, but because of the finite sizggtice that, even though there is surface flow, it is not

of our system, this measure ends up depending on only a few,q,gh to prevent the angle of the interface from climbing,
points which makes it sensitive to various local perturba- ccording to Fig. 9. The next picture, &t 16, shows the

tions. III:'?hr th't')s :Easor;, ,\,’\(’e r:ntro?rl;lci a?othehrtrkr)leaSLIJIrea ,:’r\:h'cgurface flow continuing, and also that sand is beginning to
we call the bulk-angie: (where the 1irst might be called the -, up the side of the right wall, due to our no-slip bound-

“surface angle’). This latter measure is simply the angle ry conditions. Att=20, a major avalanche begins, so that
that a line passing through the center of the container and tht%e angle of tHe interfa(’:e begins to fédee Fig. 9: thi,s cor-

center of mass makes with the vertical. This measure de-

pends on the entire system and so is less sensitive to noise.rﬁszngo 35’ on that f|gr1111e S hO][IIZOI’]t? aXTtEh? :?ﬁt piC-
will be equal to the surface angle in the event that the pileture (t=30) shows a much larger flow of material than seen

has reflection symmetry across the vertical axis; it will differear“er' . I .
from the surface angle by some fixed amount if the shape of In short, there is clearly an initial period where the sand

the pile during rotation is asymmetric but constant. Figure gnoves with the container anq where there Is no surface flow,
shows a plot of the two measures for a typical run. evidence for a nonzero static angle of repose. Recall from

Sec. Il that this effect is due to the need of the pile to dilate

before it can flow. In our model, the close-packed sites are

the ones that are restricted in their ability to dil@because
With the surface angle and bulk angle measures in placef the barrier in the free energjyThus, if the pile is dilating

let us look systematically at our data. First, we consider theluring this flow, we expect that the number of close-packed

behavior of the pile in the first moments of rotation, with sites in the pile must be decreasing. Figure 11 shows that this

three different periodd (Fig. 9. In all three cases the be- is indeed so.

-
o

angle

d A M oM A O ®

B. Static angle of repose

25 T T T T T T T T 20

20+ 15}
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o
T
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o
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o
T

surface angle

v
T

0 5 10 15 20 25 30 8 40 45 0 5 10 15 20 25 30 3 40 45
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FIG. 9. The behavior of the buleft) and surface angles during the first 45°of rotation, for three rotation sp€edz00, 280, and 400.
The horizontal axis shows the angle through which the container has been rotated.
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FIG. 10. Still frames depicting
the momentum flow in our pile in
the initial stages of rotation, in
gravity’s frame of reference. The
darker arrows represent sites in
the pile, while the lighter arrows
are the very low-density sites
above the pile. The length of each
arrow is proportional to the mo-
mentumpJ of that particular site.
For legibility, each arrow is actu-
ally the average of four lattice
sites.

C. Dynamic angle of repose to avalanche and level its interface, while the slower case has
We next consider how the pile behaves under further ro number of short avalanches that help to keep its interface
tation with three or more turns of the system. Figure 8 abové&loser to the horizontal. However, the slow line is occasion-
shows the behavior of the bulk and surface angles over thredlly punctuated by large avalanches that dip into the nega-
complete revolutions, foff =200. Figure 12 compares the tive: curiously, the interface seems to tilt in the direction
bulk angles betweeil =200 andT=1600 over three revo- Opposite that of rotation every once in a while. Figure 13
lutions. looks at one of these dips more closely. Apparently, even
Most notable in Fig. 12 is that the average slope of thewith the constant small avalanches that we see in the bulk
interface is larger for a faster rate of rotation. Also, theangle in the slowly rotating case, there is still a buildup of
slower system deviates much less from a constant angle thamotential energy that must be released by these larger events.
does the faster one, with more jaggedness suggesting fre- All of our tests so far show a nonzero dynamic angle of
guent small avalanches. These points suggest an inertial efepose, but to rule out the possibility that these angles are
fect: in the faster case the sand does not have as much tingie to viscosity or inertia it is best to find how the average
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1300 : 25 TABLE I. We fitted the angles of repose in Fig. 14 to the model
close-packed sites —— a
1950 ~ bukangle —— 0= 6y,+cTe.

2
1200 | ¢ o %o X

Bulk angle 10706:4100 —-1.35-0.07 2.49-0.15 0.148
Surface angle 83%7105.0 —0.555-0.275 2.511.12 0.780

1150 +

saaibap

-

e

Q

o
T

number of sites

1050 Experimentally, Rajchenbadi23] finds that the angular

velocity ) varies as

1000

~(H—p M
05 5 10 15 20 25 30° Q~(6-69)", @7
time
. ~ wherem=0.5+0.1. This corresponds to
FIG. 11. The number of close-packed sites for a cylindrical

system rotated at a rate = 200. Plotted against thigand on a g~ T 2:04 (28)
differenty axis) is the bulk angle of the system, for comparison.

Notice that the bulk angle does not stop its ascent until after th(bf our two measures, the bulk angle comes closer to match-
number of close-packed sites has begun to decline, and the pile has) oy heriment, but there is still some discrepancy that needs
dilated. to be addressed.
; ; Finally, we compare the surface and bulk angles with
angle(bulk or surfacg¢ depends on the period of rotatidn ' ) . oo
gle( ¢ dep b each other. For high-speed rotations, the bulk angle is higher

and from this relationship extrapolate To-o0. With this in h h ; | flact he bl f
mind we measure the average bulk and surface angles ov8P @verage than the surface angle, reflecting the plume o

time for several rotation speeds, and, in Fig. 14, plot therrm""te“‘"‘I that creeps up the suje of the CO’?t.a'“@'"'Ch IS
versus the rotation speedT1/ accounted for in a bulk calculation, but specifically excluded

The first thing to note in these plots is that neither angle iﬁfrom the S“”"’_‘CG angleThe surface angle actually seems to
going to zero in the limit of small angular velocities: there is evel off at high speeds. At lower speeds, the_bulk angle
a definite nonzero angle of repose in our system. This anglt?‘,Ctually deS. below the _surface.angle, sugggstmg that the
about 2.5°, is quite small compared to experiment wher lume has d!sappeareéds is seen in Fig. J3Notice that th.e
typically one finds angles of repose on the order of 30° luctuations in the surface angle are larger tha_n thc_>se in the
[22.23. 'E)hUIk gngle(the formle;'b(:}ep%ng:n?'onbf?r\:ver Iallttlctehsnesﬂand
T . , P us being more volatije and that in both angles these fluc-

It is interesting to fit the angles in Fig. 14 to a power law tuations get smaller as one reduces the speed of roticn

0= 0,+CTe. (26)  do not seem to go to zeyo

Such fits are shown in the figure, with the parameters given
in Table I. The intercept#, are positive, confirming a non-
zero angle of repose. The fit to the surface angle is not quan- We present evidence that one can create a nonlinear hy-
titative, but for the average bulk angle the power law fitsdrodynamical model for granular materials that depends only
well, with an exponent of-1.4. on density and momentum fields. Qualitatively, our model
These data points come from single runs, and averagindemonstrates many key features of sand, including a sharp
over an ensemble of initial conditions may make the fitsinterface, a relatively uniform density, a nonzero angle of

VIIl. DISCUSSION

more quantitative. repose, and a metastable structure. The method allows us to
e "T=200 -
14 ol
12 SN AT N NN\ AS1800
VA Ao\ \ [ NSNS
RS VA W VA " V) \/
© L.\ / N/ WAV \
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FIG. 12. The bulk angle over three revolutions for two different speeds of rotation. The horizontal axis is again scaled to show the angle

through which the container has rotated, rather than the time taken.
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rees

bulk angle

1 1 1
1310 1320 1330 1340 1350 1360 1370 1380 1390
time

FIG. 13. An instance in the slowl(= 1600) rotation of the pile where the bulk angle dips below zero. The four flow diagrams show the
momentum of the pile &t=1320, 1340, 1360, and 1380. The mechanism by which the angle drops is a large vortex in the pile which gives
individual grains a large momentum to the left. Notice how calm the pile is before and after this event: certainly this is intermittent behavior.

follow the pile from creation forward, in static and dynamic ing centrifugal forces into the system. Such forces would
situations, and the model generally behaves like a sandpilehave a magnitude of
There are several ways in which the model could be im-

2
proved. The angles of repose seen here are too small when F_ 2_77
compared to experiment, and the way that the angles scale C_pr( T ) '
with rotation speed is at odds with Rajchenbach’s findings.
This may not be a problem since we have not yet looked atvherer is the distance from the center of the container. Our
the variation of the angle of repose with the parameters charound container has a diameter of 100 unitsy s&b0, while
acterizing the model. An explanation for the difference mayp~1 and the fastest rotation speed we us& s200; thus
also lie in the fact that our rotation probe differs from thethese centrifugal forces would have a magnitude of 0.05,
typical experimental method of rotating a sandpile. In ourwhich is small(though not negligiblecompared to the main
simulations, where we rotate gravity, every particle experi-acting force of gravity, which is of magnitude roughly equal
ences the external force directly and immediately. In experito 1. Thus centrifugal forces may provide some quantitative
ment, where the container is rotated, the external force mustffect, but in our initial, qualitative presentation here we
be transmitted inward from the boundaries. This differencedleemed it unnecessary to include them.
may be enough to account for the discrepancy between simu- Another way of improving the model is to remove the
lational and experimental outcomes. One may be able teonstraint that the loose-packed regions have a single fixed
mimic the rotation of the container in our model by introduc- density. There are many nonoptimal, metastable ways to

11 14
10
+ - 12
9 =
8 10 ;
.
(] . ES
2 7 x e g Foy
& e =
g ° s . ‘
£ . 3 s -
3 5 R . *
- = x - ‘,“
4 : =
P B * LIS N SO S 4 + e
2 [ A P
Ty "
1 [4]
[4] 0.05 01 0.15 0.2 0.25 0.3 0.35 04 045 05 [4] 0.05 01 0.15 0.2 0.25 0.3 0.35 04 045 05
100/T 100/T

FIG. 14. The average surfa¢keft) and bulk angles are the center points in each column of their respective plots; the outer points
delineate one standard deviation above and below. Each data point represents one run of the system, consisting of the last two of three
complete revolutions; the first turn was thrown out to diminish initial effects. The lines are power law fits.
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pack particles together, having a range of different densitiesThe first term models the clumping behavior of sand men-
One solution may be to allow the position of the loose-tioned in property 1 in Sec. Il. The second term models the
packed well to fluctuate slightly at random through the pile.ultimate incompressibility of the sand grair®is chosen so
There are several plausible ways of implementing this ideathat the minimum of the well is ap=1. The third term
which we intend to pursue. prevents the densities from becoming negative by putting a

We have only begun to extract information using ourbarrier at zero density.
model; there are other probes we can use to perturb our sys- We have not given the definition fégp yet. Our origi-
tem. Shaking can cause the pile to slowly settle into a densearal intent was to have this term model the behavior of the
state; we hope to find the logarithmic time dependence seevery dilute gas that exists above our sandpile. So that the
in compactification experimen{d0]. Applying pressure to low-density regions show a Boltzmann distribution, we used
the system may allow us to investigate force propagation inhe standard gas entropy term
the pile, and determine the nature of stress chains. It should
be possible to modify the model to depict a pile made up of fentropy=ALp IN(p/ po) — p] (A5)
two or more types of particles, to investigate the phenomena
of unmixing and the Brazil nut effect in a hydrodynamical With po=0.05. However, this was a source of numerical in-
setting. The flexibility of the nonlinear hydrodynamical ap- stability, and, since our focus was the pile and the high-
proach gives us a wide range of avenues to investigate. density regions, we replaced this with a simpler term,
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APPENDIX: SPECIFICATION OF THE FREE ENERGY .
parameters. Our current choices were selected because they

DENSITY
gave realistic results: we selp=2, \=40, U;=0.6, \;
The first potential in Fig. 1 is made up of four terms: =400, andA=0.2. To satisfy the requirement that the mini-
mum of the potential be gi=1, we setB=(ug—A)/2\.
fa(P):fclump{P)+flarge(P)+ fnegativép)'l' fentrop)(P)-( ) The barrier introduced in Fig.(h) is described by
Al
_ _ 2
where f parrier= Upe ™ (P~ PD)72, (A7)
1 whereu,=1.5, p,=0.99, andk=10". The two wells in the
f eump= — §u0p2, (A2) final potential are described by
5 1:weIIn: —une k(p*pn)2/2, (A8)
flarge: Berr 71)! (A3)
wherep;=0.98 andp,=1.01, u;=0.25 andu,=0.4, andk
fnegatives U1€ ™17 (A4) is the same as in the expression for the barrier.
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