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Nonlinear hydrodynamical approach to granular materials
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James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637

~Received 2 August 2000; published 23 February 2001!

We propose a nonlinear hydrodynamical model of granular materials. We show how this model describes
the formation of a sandpile from a homogeneous distribution of material under gravity, and then discuss a
simulation of a rotating sandpile which shows, in qualitative agreement with experiment, a static and dynamic
angle of repose.
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I. INTRODUCTION

The nature of the theory that describes the macrosc
transport in granular materials@1# remains an unsolved prob
lem. We propose here a candidate theory, inspired by
tures of nonlinear hydrodynamics~NH!. Given its success in
treating transport in a variety of complex systems@2–7,18#,
NH seems natural to use in this context. In developing a
continuum model of granular materials, however, one
challenged by the need to incorporate some remnant of
discrete nature of the underlying material.

The development of our theory is based on the hypoth
that the states of a system can be specified in terms of a
collective variables~at sufficiently long length scales!, and
that these states are connected in time by the local conse
tion laws supplemented with constitutive relations. Ty
cally, the collective variables used are the conserved de
ties which, in the simplest view of granular materials, a
conservation of mass and momentum. Conservation of
ergy is more complicated in this case than in simple flui
due to locally inelastic processes@8# which may transfer en-
ergy into internal degrees of freedom. Although we kno
how to include the energy density into the description,
begin with a more primitive theory that uses only the ma
densityr and the momentum densitygW .

The key difference between simple fluids and granu
materials is that fluids organize over short time scales to
spatially homogeneous, while granular materials can e
over very long times in spatially inhomogeneous metasta
states: metastable, because individual grains do not alw
pack together efficiently; long lasting, because the la
masses of the grains prevent thermal fluctuations from
justing particles into a tighter configuration. Any comple
description of granular materials must be able to explain
nature of thesequenchedinhomogeneous states. Experime
suggests that a sandpile contains ‘‘force chains’’@9# which
serve to support the pile in the presence of external str
these chains are surrounded by regions of sand which
comparatively unstressed, and which allow the pile to fl
and to settle under vibrations.

Since these sandpiles~in the absence of forcing! are static,
the momentum is negligible, and we are left with the dens
field as our sole tool in describing the pile. Our prima
hypothesis is that the density field alone is sufficient to c
ture the metastable nature of the system when at rest.
cifically, we describe the force chains as regions of sand
1063-651X/2001/63~3!/031303~13!/$15.00 63 0313
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which the packing of the grains is ideal, having the ma
mum possible density. We will call these regions ‘‘clo
packed.’’ The other, ‘‘loose-packed’’ regions have the
grains arranged in some nonoptimal configuration, with
slightly smaller density. We propose that these small va
tions in the density field are sufficient to describe the me
stable nature of sand.

Using dynamical equations based on local conservatio
mass and momentum, thisquenchedpattern in the density
can be prepared in a dynamic process driven by an effec
free energy with minima characterizing the loose-packed
close-packed regions. This presents the opportunity to g
a sandpile under the influence of gravity starting from
initial homogeneous state, and in the construction of
sandpile one builds up, in a self-consistent manner, an in
mogeneous equation of state characterized by a nontr
stress tensor.

The essential structure of our theory, based on local c
servation laws, is straightforward. More difficult is the incl
sion of these competing close- and loose-packed sta
Clearly these require a detailed description of the shor
length scales treated in the model; there is a competition
length and energy scales of a type not encountered in sim
fluids. Such a short-range description will depend on det
of the particular granular material; we will be satisfied with
theory that demonstrates some generic properties of san
described in the next section. It seems reasonable that
may then be able to refine the model to include variations
the shapes and types of individual grains.

While the short-range length scales give difficulty, t
large-scale nature of our model presents us with the adv
tage of a description close in scale to those phenomena
are most visible to experiment and casual observation. O
ultimate goal is to address the existing@10# macroscopic
shaking and rotation experiments. Also, such a theory sho
eventually be useful in analyzing the surface states produ
in large-amplitude shaking experiments@11#.

There have been a number of attempts@12# to use hydro-
dynamics to understand the dynamics of sandpiles. Th
efforts differ from the one advanced here in that they do
propose to follow the full evolution of the system. There h
also been a significant theoretical effort to describe gran
materials through the use of kinetic theory@13#. This ap-
proach is organized at a more microscopic level, where
connection to the macroscopic, static, metastable phas
the system is less direct@14# and coupling to experimen
©2001 The American Physical Society03-1
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SCOTT A. HILL AND GENE F. MAZENKO PHYSICAL REVIEW E63 031303
more difficult. In many of these cases it is necessary to ‘‘l
uefy’’ the granular material in question, giving it so muc
energy that it loses the metastable quality that seems t
crucial in describing certain aspects of a sandpile’s behav

In this paper we begin by describing some generic f
tures of sand that we hope to incorporate into our model.
then proceed to a development of our dynamical equat
from a generalized Langevin equation. This will lead into
discussion of the choice of a driving free energy, which w
be crucial in creating the quenched pattern in the den
field.

To test the validity of the theory we turn to simulation o
a two-dimensional lattice. We begin with a rectangular b
containing a homogeneous distribution of sand under the
fluence of gravity, and we show that it does indeed form
sandpile with an inhomogeneous distribution of loose- a
close-packed states. We then turn to simulations in a circ
container, first forming a sandpile using the same techniq
and then rotating the pile at different speeds. We comp
the resulting angles of repose and oscillations about th
angles to corresponding experimental data in the literatu

II. PROPERTIES OF GRANULAR MATERIALS

We want to construct our model to be compatible with t
following aspects of granular materials.

~1! Granular materials have a clumping property; simu
tions of simple systems of inelastically colliding balls pr
vide evidence for this phenomenon. One possible expla
tion for this clumping is the theory ofinelastic collapse@8#:
when two particles collide inelastically, they lose ener
from their translational degrees of freedom and so rec
more slowly than they approach each other. On average
particles stay closer together than if they had collided ela
cally, and regions of higher density build up. This can a
be described in terms of a hydrodynamical instability@15#.

~2! Thermal energies in a sandpile are very small co
pared to, for instance, the average gravitational energy. T
we should be able to ignore thermal noise.

~3! Because of the large masses of the grains, one d
not expect a significant vapor pressure above the interfac
is found in liquid-gas systems. Indeed, we expect avery di-
lute gas of grains above the pile, whose density exhibit
Boltzmann distribution due to the effect of gravity.

~4! Sandpiles are strongly driven by gravity and, beca
of the lack of thermal effects, the dense sandpile is separ
from the dilute gas above by a sharp interface.

~5! Granular materials are strongly disordered, with me
stable structures forming upon creation of a pile. This is a
due to the lack of thermal effects. As mentioned in the
troduction, there is evidence of stress chains running thro
the bulk of sandpiles, which may be associated with
ramified clumps formed in the more dilute systems stud
using kinetic theory. The important point for us is that the
is competition between somewhat more dense dom
~stress chains and arches! and other, more loosely packe
regions in the pile.
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~6! Granular materials are stiff: when moved or jostled t
pile can for a time behave as a solid object. Thus the sand
should have a relatively uniform density.

~7! One specific example of this stiffness is that a sandp
can maintain a nonhorizontal surface. For example, whe
pile of sand in a container is rotated about a horizontal a
it does not flow immediately but waits until its surface pass
a certain critical angle~called the angle of repose! with the
horizontal. According to Reynolds@16#, this effect is due to
the static interlocking grains that make up a granular ma
rial: the pile must dilate first, giving these grains freedom
move about, before flow is possible.

~8! It is well known that granular materials can be ve
sensitive to boundary and finite-size effects; the famo
Brazil-nut-to-the-top phenomenon@17#, for instance, is
strongly influenced by both.

We will touch on these points while developing o
model.

III. DYNAMICAL EQUATIONS

Inspired by nonlinear hydrodynamics, we begin with t
generalized Langevin equation@18,19#

]ca~xW ,t !

]t
5Va@c~xW ,t !#2Gab~xW !

dF@c~xW ,t !#

dcb~xW ,t !
. ~1!

~Throughout this section, summation is implied over all r
peated indices.! The variablesca are the ‘‘slow’’ fields of
interest in the problem: as mentioned earlier, these are
density fieldr(xW ) and the momentum fieldgW (xW ). The first
termVa@c# is thestreaming velocity, and corresponds to th
reversible terms in typical hydrodynamical equations. As
will see, it depends on the Poisson brackets of the s
fields, as well as the derivatives of the Landau-Ginzbu
Wilson effective free energyF. The second term is dissipa
tive in nature, andGab is the symmetric matrix of dissipative
coefficients. Because granular materials are essentially z
temperature systems~property 2!, there is no thermal noise
driving the system.

For our system, the free energyF can be broken up into
kinetic, potential, and external parts:

F5FK1FP1FE . ~2!

From thermodynamics, one has the result that the varia
conjugate to the momentum density is the velocity field:

dF

dgi~xW !
[v i~xW ![

gi~xW !

r~xW !
, ~3!

wherei is a vector label. The kinetic energy contribution
the free energy thus has all of the momentum dependen

FK5E ddxW
gW 2~xW !

2r~xW !
, ~4!

while FP andFE are functions only of the density. We wil
make further assumptions as to the form ofFP below.FE is
3-2
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NONLINEAR HYDRODYNAMICAL APPROACH TO . . . PHYSICAL REVIEW E63 031303
the free energy due to external forces: for instance, in
presence of a uniform gravitational field

FE5E ddx gr~xW !~z2z0!, ~5!

where the scalarg is the acceleration due to gravity andz0 is
the bottom of a confining box.

The streaming velocityVa @in Eq. ~1!# is given by the
equation

Va@c#5$ca ,cb%
dF

dcb
, ~6!

where the indicesa,b run over the set$r,gW %. We calculate
the Poisson brackets by identifying the fieldsca with micro-
scopic variables, evaluating their Poisson brackets, and
pressing the results in terms of theca , getting the standard
results@19#

$r~xW !,gi~xW8!%52¹ i@d~xW2xW8!r~xW !# ~7!

and

$gi~xW !,gj~xW8!%52¹ j@d~xW2xW8!gi~xW !#

1¹ i8@d~xW2xW8!gj~xW !#. ~8!

With these and the appropriate derivatives of the free ene
we can calculate the streaming velocities

Vr52¹W •gW ~9!

and

Vgi
52r~xW !¹ i

dFP

dr~xW !
2r~xW !gd iz2¹ j S gi~xW !gj~xW !

r~xW !
D .

~10!

By choosingGrb50, one easily obtains the usual continui
equation

]r

]t
52¹W •gW . ~11!

The components of the damping tensor associated with
momentum density,

Li j [Ggigj
, ~12!

can be expressed in terms of the viscosity. IfL were inde-
pendent of the fluctuating fields, then we could write it in t
general form

Li j 52h i l ,k j¹ l¹k , ~13!

where

h i l ,k j5h0~d i l d jk1d ikd j l !1~z02 2
3 h0!d i j dkl ~14!
03130
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is the viscous tensor, andh0 andz0 are the ‘‘bare’’ viscosi-
ties. It is more realistic, however, for the dissipation to d
pend on the density of the sand, and so we introduce a fu
tion f(r) into the damping tensor:

Li j 52h i l ,k j¹ l@f~r!¹k#. ~15!

We shall say more aboutf(r) below. It should be empha
sized that, in a system with strong nonlinearities and spa
inhomogeneity such as ours, there exists no simple relat
ship between these bare viscosities and their physical co
terparts.

We can now write the remaining Langevin equation:

]gi

]t
5Vgi

2Ggigj

dF

dgj

52r¹ i

dFP

dr
2rgd iz2¹ j~gigj /r!2Li j

gj

r
. ~16!

At this point, we must choose a form forFP . In this
simple theory, we make the assumption thatFP is of the
square-gradient form

FP5E ddxF f ~r!1
1

2
c~¹r!2G , ~17!

wheref (r), the free energy density, is a local function ofr,
andc is a positive constant@20#. Thus we have

]gi

]t
52r¹ i

] f

]r
1cr¹ i¹

2r2¹ j~gigj /r!

1h i j ,kl¹ j@f~r!¹k~gl /r!#2grd iz . ~18!

It should be noted that we can rewrite this equation as
divergence of a stress tensor plus a term representing e
nal forces:

]gi

]t
52¹ js i j 1Fi

E . ~19!

This is the usual continuity equation for conservation of m
mentum, just as our expression for the density’s evolution
the continuity equation for conservation of mass.

For calculational reasons, we prefer to work not with t
momentagW , but with the velocity fieldsvW , defined by Eq.~3!
above. In terms of the density and velocity fields, the eq
tions of motion become

]r

]t
52¹W •~rvW ! ~20!

and

]v i

]t
52¹ i

] f

]r
1c¹ i¹

2r2v j¹ jv i

1
1

r
h i j ,kl¹ j@f~r!¹kv l #2gd iz . ~21!
3-3
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FIG. 1. Three steps to our free energy density:~a! with no metastability;~b! with a barrier to create metastability; and~c! with wells to
stiffen the material.
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To proceed further, one needs to choose forms forf(r) and
the viscosities. For very low densities we expect that
dissipative part of the equation should vanish; for this
happen,f(r) must go to zero at least as fast asr2. Higher
powers ofr seem to make our numerical calculations mo
stable, so we have usedf5r4. This issue is not very impor
tant in the dense sandpile wherer'1. We choosez0
5 5

3 h0 in Eq. ~14! so thath i j ,kl is isotropic:

h i j ,kl5h0~d i j dkl1d ikd j l 1d i l d jk!. ~22!

In this theory, the input most crucial in specifying san
like behavior is the free energy densityf (r). With an appro-
priate choice off we will be able to create a system that
very different from conventional fluids.

IV. CONSTRUCTING THE FREE ENERGY DENSITY

We will construct the free energyf (r) using three steps
as outlined in Fig. 1. The mathematical details of the desc
tion of the free energy can be found in the Appendix. We c
think of f (r) as a potential where the system picks out v
ues of the density which correspond to minima off. A key
assumption is that, from property 1, grains of sand tend
clump together, and so the potential has a minimum wh
we arbitrarily place atr51. The grains themselves are in
compressible, so the potential rises rapidly for densi
higher thanr51. Similarly, the potential becomes large
one approaches zero density, to prevent unrealistic nega
values of the density anywhere in the pile.

Calculations show that this potential, so far, is enough
capture some properties of sand: the sharp interface
sandpile, for instance. However, it is still missing one k
element, and that is the metastability found in experime
Any pile formed using this free energy would be homog
neous in density, and show no evidence of the close-pac
and loose-packed regions mentioned in property 5. With
these regions, our material would be little more than
slightly compressible liquid.

In Fig. 1~b!, we introduce this metastability into the sy
tem by placing a barrier into the potential just to the left
its minimum. We now have the following picture: the min
mum represents the optimal packing for the sand grains
sand comes together, it increases the density of the pile
it reaches the density of the barrier where it is frustrated
can no longer proceed to the optimal packing. However
the sand begins to pile up, pressures in the pile can pro
03130
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enough of a push so that some regions may pass the ba
and reach the minimum of the potential.

This potential has all of the right features, but in simu
tions it proves to make a sandpile that is too soft and liqu
like. To stiffen the pile, we introduce two wells, as in Fi
1~c!: one for the close-packed and one for the loose-pac
states. With the wells, this is the free energy we have use
our calculations. Future possible modifications to this fr
energy will be discussed in our conclusion.

V. NUMERICAL ANALYSIS

Because the proposed model has a strongly nonlinear
ture, we are forced to study this system’s evolution nume
cally, hoping that this will inspire subsequent analytic
work. The first order of business is to determine numerica
whether this system of equations, running forward in tim
can prepare a state that looks like a sandpile. In princi
this should be straightforward to do. In practice, there ar
number of difficulties in putting these partial differenti
equations onto a space-time lattice.

~1! Lattice spacing.It is understood that, to solve partia
differential equations numerically, one must keep the ti
step much smaller than the lattice size; otherwise, the sys
develops physical instabilities. We have chosen a typ
convention of settingDx51 andDt50.001.

~2! We know that there are importantfinite-size effectsin
granular systems, and so we must be prepared to exam
our model in various sizes and shapes of containers. T
paper focuses on two such containers: a rectangle 200 u
high and 100-units wide, and a circle with a 100 unit dia
eter. Other containers have been tried as well, yielding si
lar results.

~3! One of the discouraging aspects of this approach is
large number ofparametersgoverning the system. There ar
parameters to control the intrinsic free energy and
square-gradient energy, as well as those for external fo
like gravity. There is the finite size of the box and the natu
of the boundary conditions. Dynamically, there are the v
cosities and the initial levels of the density and veloc
fields. In this paper, the values of these parameters have
chosen to obtain structures that resemble sandpiles. Mo
these choices are reported in the Appendix where the form
the free energy is described in detail; in addition, we takc
510 andh0512. Further work is needed to map out th
range of parameters for which we obtain physical behav
and determine which parameters are ultimately importan
3-4
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NONLINEAR HYDRODYNAMICAL APPROACH TO . . . PHYSICAL REVIEW E63 031303
~4! This numerical problem would be rather straightfo
ward if not for a set of persistent unphysicalinstabilities;
without care the system can and will explode in a very u
natural fashion. These explosions are of two closely rela
types:runaway velocitiesandnegative densities. To alleviate
the first, we have taken the pragmatic step of locally aver
ing the velocity if it gets larger than some empirically dete
mined cutoff.

Our free energy density has been designed with a ba
at r50, but negative densities do tend to show up in o
calculations, specifically in the dilute region above the sa
pile. We take two steps to counter them: when the densit
a site is small and positive (r,0.05), we average the site’
velocity with half of the neighbors’ average velocity. In a
dition, when the density dips below zero, we bring in dens
from its four neighbors to bring it above zero. In treatin
these instabilities, we have been very careful not to viol
conservation of mass.

VI. FORMING A SANDPILE

As a first example of how our model works, we beg
with a nearly uniform distribution of sand which, under th
influence of gravity, forms a sandpile at the bottom of t
container. Our container is a two-dimensional box, overl
with a square lattice 100 units wide and 200 units hig
Boundary conditions on the walls of the container are n
slip. Our initial conditions arer50.51Dr and vW 5DvW ,
whereDr and DvW are both small~0.001 rms! random per-

FIG. 2. Kinetic energies forg51 andg50.5.
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turbations in the system. Because mass is conserved an
cause the density inside the formed pile should have a d
sity about 1, we expect the interface to form in the middle
the box, aroundz5100. In principle, one should averag
over ensembles of initial conditions. That is not necess
for our purposes here, but will become important in mo
quantitative work.

The first question is whether the model captures the ov
all dynamics of the system: our physical picture of the si
ation has the sand particles all under the influence of grav
so at first there will be a net acceleration. As particles be
to hit the bottom of the container, their velocity drops
zero, and the system as a whole decelerates until it ends
rest. To see if this is true we measure the average kin
energy

Ekin5
1

V (
z,x

r~z,x!v2~z,x!, ~23!

where the sum is over the entire box, andV is the total
number of lattice sites. Figure 2 shows a plot of the kine
energy for two runs with different gravitational acceleration
In both cases the behavior is just as expected, with an im
diate acceleration followed by a deceleration to rest. A
interesting to note is the difference between the curves:
run with stronger gravity causes the pile to form faster, w
a higher maximum kinetic energy resulting from the high
initial potential energy of the system.

To get a clearer picture of the stationary state our sys
is settling into, we consider the density profile

P~z!5
1

Nx
(

x
r~z,x!, ~24!

whereNx is the number of sites across the lattice. Figure
superimposes snapshots of this profile at seven instance
time. Initially, the profile is a flat lineP(z)50.5, represent-
ing the initial homogeneous distribution. As time progress
the density begins to increase for lowz, indicating pile for-
mation; at the same time, the density at higher altitude
decreasing. Byt530 the system has settled into a phas
separated system of high-density pile below and low-den
‘‘gas’’ above, with a sharp interface between the two~agree-
ing with property 4 in Sec. II!.

The height of the pile can be defined as that value ofz for
which the profile reachesP(z)50.5, or half the average den
FIG. 3. The profile of the pile
for g50.5, t55,10,15,20,30,40
50. The variablez represents the
height above the bottom of the
container, which is atz50.
3-5
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SCOTT A. HILL AND GENE F. MAZENKO PHYSICAL REVIEW E63 031303
sity of the pile@21#. This is plotted as a function of time in
Fig. 4, along with the vertical coordinate of the system
center of mass,

zCM5

(
x,z

zr~z,x!

(
x,z

r~z,x!

, ~25!

with the sums over all the points in the lattice.
At first the center of mass moves downward in time pa

bolically, as it should with the system in free fall. As th
sand starts to pile up, less and less of the sand is in mo
and the center of mass approaches a constant height of
The height of the interface moves contrary to this, of cour
settling in at 100, halfway up the container. This is ju
where we would expect it to be: we began with a unifo
distribution of density 0.5, and the density of the loos
packed and close-packed wells are near 1, so the ave
density of the pile should be approximately 1, and the c
tainer should be half full. The center of mass is sligh

FIG. 4. The location of the interface, and the vertical compon
of the center of mass, forg50.5. The interface does not really exi
until a pile begins to form, so we did not begin measuring
location of the interface until some time aftert55. The sharp peak
in the interface’s curve occurs when the small bump to the righ
Fig. 3 hits the forming pile below.
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higher than the midpoint between the base and the inter
of the pile, suggesting that the pile may be somewhat
heavy, but this effect is negligible.

Since on the large-distance scale our system looks lik
sandpile, we turn our attention to the small-scale featu
inside the pile. Specifically, we want to investigate the co
peting regions of loose-packed and close-packed states, m
tioned in property 5 of Sec. II, corresponding to the tw
wells in the free energy. Recall that these wells are separ
by a barrier, which we have placed atr50.99; for definite-
ness, we say that all sites withr.0.99 are close packed an
all sites with 0.85,r<0.99 are loose packed.

In Fig. 5 we count the number of loose- and close-pack
sites as a function of time, for two different strengths
gravity. Naturally, the loose sites start to form first; some
these are then pushed across the barrier and become
packed due to the weight of sand on top of them. Bo
graphs show the numbers of loose- and close-packed
approaching a constant as the pile settles. Notice that
final ratio of low-density to high-density sites is sensitive
parameters such as gravity: a stronger gravitational field
a greater capacity to compact the sand and create more c
packed sand.

Figure 6 shows how these loose- and close-packed
gions are distributed through the pile for the same two val
of g. The top halves of each pile share similar features: b
have a layer of loosely packed sand on top, where there i
other sand to weigh it down and compress it. Immediat
below the surface in the center there is a region of tigh
packed sand, which dips farther below the surface in
center of the pile than to either side. This region is flanked
columns of loosely packed sand, which are in turn flanked
dense sand up against the edges of the box. The differe
in the two piles are mostly at the bottom: the run with le
gravity is mostly loose packed in the bulk of the pile, whi
the run with more gravity is tighter. Note, however, that
neither case is the density uniform: one can find patche
both types in both piles.

VII. ROTATING A SANDPILE

A. Setup

One of the standard ways to probe a granular system
rotate it about some horizontal axis. This method dem

t

n

or

FIG. 5. Number of loose-

packed and close-packed states f
g50.5 ~left! andg51.
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FIG. 6. Pattern of loose~gray!
and close ~black! states for g
50.5 ~left! andg51.
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strates several characteristics of a granular material, and
most important of these is the angle of repose. Actua
there are~at least! two such angles associated with rotatio
If one begins with sand in a cylindrical container, having
horizontal free surface, and then begins to rotate the cylin
about its axis, the surface of the sand will increase in sl
along with the container’s rotation until it reaches some cr
cal slope, at which point an avalanche will restore the surf
to a more horizontal state. This we might call a ‘‘static
angle of repose,us . If one continues to rotate the cylinde
then one of two things will happen. If the rotation is slo
enough, then the flow along the surface will come to a s
before a further increase in slope should cause an avala
again. The result is a periodic, intermittent flow, and t
interface oscillates about some average angle. If the rota
is faster, the flow from the first avalanche does not have t
to stop before the next avalanche begins. The system se
into a state where there is a continuous flow along the
face, and the interface maintains a constant angle with
horizontal. In both cases, we may take the mean angle
the surface makes with the horizontal over time and call
‘‘dynamic’’ angle of repose,ud . In the periodic case, a
quantity as important as the angle of repose is the size o
fluctuation about that angle,dd . The actual values of thes
angles seem to depend experimentally on a number of
tors, including particle size and shape, the humidity of
air, how the pile is formed, boundary conditions, and
forth. The experimental results of Jaegeret al. @22#, for in-
stance, find that spherical glass beads with diameters
about half a millimeter show a dynamic angle of repose
26°, with a fluctuation of 2.6°; while rough aluminum oxid
particles with the same diameter show a higher angle, 3
with a fluctuation of 5°. These seem to be typical valu
What will be most important in our qualitative analysis
that these angles exist and are non-negligible.

We set out to find evidence of these two angles in
model. To better match experiments in this field, we mo
from a rectangular box to a circular one having a diamete
100 lattice sites and the same no-slip boundary conditio
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We grow a sandpile here as we did before: Fig. 7 shows
pattern of loose- and close-packed states in a pile forme
our circular container.

To best mimic rotation under experimental condition
one would ideally set up rotating boundary conditions, g
ing a constant velocity to the sand at the edge of the c
tainer. This has turned out to be difficult to do in practic
one reason is that, due to the lattice, our boundary is n
perfect circle, and there is a tendency for mass to ‘‘leak’’
or out of the boundaries when the boundary conditions
not strictly noslip. Because of this, we choose to implem
rotation by rotating gravity with a constant period of rotatio
T.

To look for an angle of repose we need to measure
angle that the interface makes with the horizontal~that is, the
normal to gravity!. The most direct way to do this is to fit th
interface of the pile with a line, and measure the angle t
this line makes with the horizontal. This is indeed one of o
probes: we define as our interface those points in the
(r.0.5) that have a nearest neighbor outside the pile, a

FIG. 7. Pattern of loose~gray! and close~black! states forg
51 in a circular container. It is interesting that this looks more li
the lower-gravity distribution in the rectangular box, in Fig. 6, wi
a clump of high density floating on top of a low-density sea. This
probably due to the smaller amount of total mass in this system
3-7
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to reduce boundary effects, we throw out those points
are not within one-half radius from the center.

This method should be ideal, but because of the finite s
of our system, this measure ends up depending on only a
points which makes it sensitive to various local perturb
tions. For this reason, we introduce another measure, w
we call the ‘‘bulk angle’’~where the first might be called th
‘‘surface angle’’!. This latter measure is simply the ang
that a line passing through the center of the container and
center of mass makes with the vertical. This measure
pends on the entire system and so is less sensitive to noi
will be equal to the surface angle in the event that the p
has reflection symmetry across the vertical axis; it will diff
from the surface angle by some fixed amount if the shap
the pile during rotation is asymmetric but constant. Figur
shows a plot of the two measures for a typical run.

B. Static angle of repose

With the surface angle and bulk angle measures in pla
let us look systematically at our data. First, we consider
behavior of the pile in the first moments of rotation, wi
three different periodsT ~Fig. 9!. In all three cases the be

FIG. 8. The behavior of the surface and bulk angles for a typ
run (T5200). Notice the overall similarity in the shape of the tw
plots, although the bulk angle has a much smoother curve. The
angle is consistently above the surface angle, suggesting tha
pile has an asymmetric shape.~All angles are measured in degrees!
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havior is similar: as the container turns, the interface’s slo
increases, until its angle reaches some maximum and be
to decline due to one or more avalanches. Clearly, there
static angle of repose here, which depends on the rota
speed. Notice, however, that if there were no activity in t
sandpile before the first maximum in the angle, then
curve would follow the straight line denoted in the figure
‘‘solid’’ until turning downward. Instead, it seems that th
surface is losing slope, lagging behind the container, from
very early time: there is some preliminary flow in the pil
even before the first major avalanche.

Figure 10 contains six snapshots of the flow during t
initial period, withT5200. All of the pictures here are in th
laboratory frame~that is, gravity’s frame!, so the first picture
(t54) shows the pile moving in unison with the containe
as if it were a solid and fastened to the walls. Att58, how-
ever, things are beginning to change: the center of rota
seems to have moved to the right and downward, and
sand coming up on the right side is beginning to curve o
to the left. The result of this action is seen in the next pictu
where there is a definite flow along the surface of the p
Notice that, even though there is surface flow, it is n
enough to prevent the angle of the interface from climbin
according to Fig. 9. The next picture, att516, shows the
surface flow continuing, and also that sand is beginning
climb up the side of the right wall, due to our no-slip boun
ary conditions. Att520, a major avalanche begins, so th
the angle of the interface begins to fall~see Fig. 9; this cor-
responds to 36°on that figure’s horizontal axis!. The last pic-
ture (t530) shows a much larger flow of material than se
earlier.

In short, there is clearly an initial period where the sa
moves with the container and where there is no surface fl
evidence for a nonzero static angle of repose. Recall fr
Sec. II that this effect is due to the need of the pile to dila
before it can flow. In our model, the close-packed sites
the ones that are restricted in their ability to dilate~because
of the barrier in the free energy!. Thus, if the pile is dilating
during this flow, we expect that the number of close-pack
sites in the pile must be decreasing. Figure 11 shows that
is indeed so.

l

lk
the
FIG. 9. The behavior of the bulk~left! and surface angles during the first 45°of rotation, for three rotation speeds:T5200, 280, and 400.
The horizontal axis shows the angle through which the container has been rotated.
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FIG. 10. Still frames depicting
the momentum flow in our pile in
the initial stages of rotation, in
gravity’s frame of reference. The
darker arrows represent sites
the pile, while the lighter arrows
are the very low-density sites
above the pile. The length of eac
arrow is proportional to the mo-

mentumrvW of that particular site.
For legibility, each arrow is actu-
ally the average of four lattice
sites.
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C. Dynamic angle of repose

We next consider how the pile behaves under further
tation with three or more turns of the system. Figure 8 ab
shows the behavior of the bulk and surface angles over t
complete revolutions, forT5200. Figure 12 compares th
bulk angles betweenT5200 andT51600 over three revo
lutions.

Most notable in Fig. 12 is that the average slope of
interface is larger for a faster rate of rotation. Also, t
slower system deviates much less from a constant angle
does the faster one, with more jaggedness suggesting
quent small avalanches. These points suggest an inertia
fect: in the faster case the sand does not have as much
03130
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to avalanche and level its interface, while the slower case
a number of short avalanches that help to keep its inter
closer to the horizontal. However, the slow line is occas
ally punctuated by large avalanches that dip into the n
tive: curiously, the interface seems to tilt in the direct
opposite that of rotation every once in a while. Figure
looks at one of these dips more closely. Apparently, e
with the constant small avalanches that we see in the
angle in the slowly rotating case, there is still a buildup
potential energy that must be released by these larger ev

All of our tests so far show a nonzero dynamic angle
repose, but to rule out the possibility that these angles
due to viscosity or inertia it is best to find how the avera
3-9
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SCOTT A. HILL AND GENE F. MAZENKO PHYSICAL REVIEW E63 031303
angle~bulk or surface! depends on the period of rotationT,
and from this relationship extrapolate toT→`. With this in
mind we measure the average bulk and surface angles
time for several rotation speeds, and, in Fig. 14, plot th
versus the rotation speed 1/T.

The first thing to note in these plots is that neither angle
going to zero in the limit of small angular velocities: there
a definite nonzero angle of repose in our system. This an
about 2.5°, is quite small compared to experiment wh
typically one finds angles of repose on the order of 3
@22,23#.

It is interesting to fit the angles in Fig. 14 to a power la

u5u01cTa. ~26!

Such fits are shown in the figure, with the parameters gi
in Table I. The interceptsu0 are positive, confirming a non
zero angle of repose. The fit to the surface angle is not qu
titative, but for the average bulk angle the power law fi
well, with an exponent of21.4.

These data points come from single runs, and averag
over an ensemble of initial conditions may make the
more quantitative.

FIG. 11. The number of close-packed sites for a cylindri
system rotated at a rate ofT5200. Plotted against this~and on a
different y axis! is the bulk angle of the system, for compariso
Notice that the bulk angle does not stop its ascent until after
number of close-packed sites has begun to decline, and the pile
dilated.
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Experimentally, Rajchenbach@23# finds that the angular
velocity V varies as

V;~u2ud!m, ~27!

wherem50.560.1. This corresponds to

u;T2260.4. ~28!

Of our two measures, the bulk angle comes closer to ma
ing experiment, but there is still some discrepancy that ne
to be addressed.

Finally, we compare the surface and bulk angles w
each other. For high-speed rotations, the bulk angle is hig
on average than the surface angle, reflecting the plum
material that creeps up the side of the container~which is
accounted for in a bulk calculation, but specifically exclud
from the surface angle!. The surface angle actually seems
level off at high speeds. At lower speeds, the bulk an
actually dips below the surface angle, suggesting that
plume has disappeared~as is seen in Fig. 13!. Notice that the
fluctuations in the surface angle are larger than those in
bulk angle~the former depending on fewer lattice sites a
thus being more volatile!, and that in both angles these flu
tuations get smaller as one reduces the speed of rotation~but
do not seem to go to zero!.

VIII. DISCUSSION

We present evidence that one can create a nonlinear
drodynamical model for granular materials that depends o
on density and momentum fields. Qualitatively, our mod
demonstrates many key features of sand, including a sh
interface, a relatively uniform density, a nonzero angle
repose, and a metastable structure. The method allows u

l

e
as

TABLE I. We fitted the angles of repose in Fig. 14 to the mod
u5u01cTa.

c a u0 x2

Bulk angle 1070064100 21.3560.07 2.4960.15 0.148
Surface angle 83.76105.0 20.55560.275 2.5161.12 0.780
he angle
FIG. 12. The bulk angle over three revolutions for two different speeds of rotation. The horizontal axis is again scaled to show t
through which the container has rotated, rather than the time taken.
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FIG. 13. An instance in the slow (T51600) rotation of the pile where the bulk angle dips below zero. The four flow diagrams sho
momentum of the pile att51320, 1340, 1360, and 1380. The mechanism by which the angle drops is a large vortex in the pile whic
individual grains a large momentum to the left. Notice how calm the pile is before and after this event: certainly this is intermittent b
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follow the pile from creation forward, in static and dynam
situations, and the model generally behaves like a sandp

There are several ways in which the model could be
proved. The angles of repose seen here are too small w
compared to experiment, and the way that the angles s
with rotation speed is at odds with Rajchenbach’s findin
This may not be a problem since we have not yet looked
the variation of the angle of repose with the parameters c
acterizing the model. An explanation for the difference m
also lie in the fact that our rotation probe differs from t
typical experimental method of rotating a sandpile. In o
simulations, where we rotate gravity, every particle expe
ences the external force directly and immediately. In exp
ment, where the container is rotated, the external force m
be transmitted inward from the boundaries. This differen
may be enough to account for the discrepancy between s
lational and experimental outcomes. One may be able
mimic the rotation of the container in our model by introdu
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ing centrifugal forces into the system. Such forces wo
have a magnitude of

Fc5rr S 2p

T D 2

,

wherer is the distance from the center of the container. O
round container has a diameter of 100 units, sor<50, while
r;1 and the fastest rotation speed we use isT5200; thus
these centrifugal forces would have a magnitude of 0.
which is small~though not negligible! compared to the main
acting force of gravity, which is of magnitude roughly equ
to 1. Thus centrifugal forces may provide some quantitat
effect, but in our initial, qualitative presentation here w
deemed it unnecessary to include them.

Another way of improving the model is to remove th
constraint that the loose-packed regions have a single fi
density. There are many nonoptimal, metastable ways
points
o of three
FIG. 14. The average surface~left! and bulk angles are the center points in each column of their respective plots; the outer
delineate one standard deviation above and below. Each data point represents one run of the system, consisting of the last tw
complete revolutions; the first turn was thrown out to diminish initial effects. The lines are power law fits.
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SCOTT A. HILL AND GENE F. MAZENKO PHYSICAL REVIEW E63 031303
pack particles together, having a range of different densit
One solution may be to allow the position of the loos
packed well to fluctuate slightly at random through the p
There are several plausible ways of implementing this id
which we intend to pursue.

We have only begun to extract information using o
model; there are other probes we can use to perturb our
tem. Shaking can cause the pile to slowly settle into a den
state; we hope to find the logarithmic time dependence s
in compactification experiments@10#. Applying pressure to
the system may allow us to investigate force propagation
the pile, and determine the nature of stress chains. It sh
be possible to modify the model to depict a pile made up
two or more types of particles, to investigate the phenom
of unmixing and the Brazil nut effect in a hydrodynamic
setting. The flexibility of the nonlinear hydrodynamical a
proach gives us a wide range of avenues to investigate.
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APPENDIX: SPECIFICATION OF THE FREE ENERGY
DENSITY

The first potential in Fig. 1 is made up of four terms:

f a~r!5 f clump~r!1 f large~r!1 f negative~r!1 f entropy~r!,
~A1!

where

f clump52
1

2
u0r2, ~A2!

f large5Bel(r221), ~A3!

f negative5U1e2l1r. ~A4!
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The first term models the clumping behavior of sand m
tioned in property 1 in Sec. II. The second term models
ultimate incompressibility of the sand grains:B is chosen so
that the minimum of the well is atr51. The third term
prevents the densities from becoming negative by puttin
barrier at zero density.

We have not given the definition forf entropyyet. Our origi-
nal intent was to have this term model the behavior of
very dilute gas that exists above our sandpile. So that
low-density regions show a Boltzmann distribution, we us
the standard gas entropy term

f entropy8 5A@r ln~r/r0!2r# ~A5!

with r050.05. However, this was a source of numerical
stability, and, since our focus was the pile and the hig
density regions, we replaced this with a simpler term,

f entropy5Ar. ~A6!

The reason we did not eliminate the term entirely was t
the original term created a shallow minimum aroundr
50.05, and for consistency we decided to keep that m
mum there, which the linear term allows us to do.

Clearly, this model has a lot of parameters, and one p
of our future work will be to find optimal values for thes
parameters. Our current choices were selected because
gave realistic results: we setu052, l540, U150.6, l1
5400, andA50.2. To satisfy the requirement that the min
mum of the potential be atr51, we setB5(u02A)/2l.

The barrier introduced in Fig. 1~b! is described by

f barrier5ube2k(r2rb)2/2, ~A7!

whereub51.5, rb50.99, andk5105. The two wells in the
final potential are described by

f welln
52une2k(r2rn)2/2, ~A8!

wherer150.98 andr251.01, u150.25 andu250.4, andk
is the same as in the expression for the barrier.
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