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Granular clustering in a hydrodynamic simulation
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We examine the hydrodynamics of a granular gas using numerical simulation. We demonstrate the appear-
ance of shearing and clustering instabilities predicted by linear stability analysis, and show that their appear-
ance is directly related to the inelasticity of collisions in the material. We discuss the rate at which these
instabilities arise and the manner in which clusters grow and merge.
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One of the key differences between a granular material ap
and a regular fluid is that the grains of the former lose energy o
with each collision, whereas the molecules of the latter do
not. Even when the inelasticity of the collisions is small, it (pu;)

SV . i
can give rise to dramatic effects, such asMexwell Demon T —ViP=V,(puju)+ V(7 Vi),
effect [1] and, the topic of this paper, the phenomenon of
granular clustering. Experimerit®,3] and molecular dynam-
ics simulationg4] alike show that low-density collections of JT 1 _ - 1 ~
grains (“granular gasesJ in the absence of gravity do not g; ~  Vi(UiD+ ;Vi(KViTH ;”iik'(viui)(vku')_ T,
become homogeneous with time, but instead form denser (1)
clusters of stationary particles surrounded by a lower-density
region of more energetic particles. A kinetic explanation forwhere repeated indices are summed over and wRerg
t?'lsht;ehﬁvﬁr IZ that, V\_/hin a part|c|e||¢nters i’ﬂ‘ region Obressure,x is the bare thermal conductivity, and
slightly higher density, it has more collisions, loses more_;l(gikglerénéijr5”_5“) is the isotropic bare viscosity

energy, and so s less able to leave that region. This inc_reas%nsor These equations bear much in common with those for
the local density and makes it more likely that additional :

particles are captured in the same way. normaljluids[9]. The most important addition is that of the
We are interested in describing this clustering behavioiterm — yT, which accounts for the inelasticity of collisions;

using hydrodynamics. There is considerable widgkderiv-  parametery is proportional to (}r2), wherer is the coef-

ing granular hydrodynamics from kinetic theory, focusing onficient of restitution. Using kinetic theory resuli§], the

analytical treatments of the long-wavelength behavior of tharansport coefficients are chosen to depend on temperature

system. Goldhirsch and Zanef@], for instance, describe and density:

clustering as the result of a hydrodynamic instability: a re-

gion of slightly higher density has more collisions, so more k=KTY2

energy is lost and the region has a lower “temperatyg’

—Vi(pu),

Less temperature results in less pressure, and this lower- 7=npTY2

pressure region, in turn, attracts more mass from the sur-

rounding higher-pressure regions. Their paper uses long- = T2 )
wavelength stability analysis to show that, in a system of LA

hydrodynamic equations similar to E¢l) below, higher- Typically, work in granular hydrodynamics is done in
density regions do indeed have lower pressure, fuelling theyy-density regimes, where grains may be treated as point
instability. particles interacting via collisions. When simulating aggrega-

In this paper, we study the hydrodynamics of granulartion, however, one must take excluded volume into account.
clustering in zero gravity, by using numerical simulation. e do this by introducing a barrier in pressitép) at some
Our motivation is to determine whether a coarse-grained demaximum (close-packeddensity po. This is in addition to

scription, in terms of local particle, momentum, and energythe ysual hydrodynamic pressy&. We choose, in particu-
densities, can be used to treat characteristic behaviors @f; the simple quadratic form

granular materials as a self-contained dynamical sy$®m

We show that the instabilities predicted by linear analysis do P=pT+U(p?>—p3)6(p—po). 3

arise in our simulations, and discuss how the onset of these

instabilities depends on the inelasticity of collisions in thewhereU is a positive parametef(x) is the unit step func-

material. We also show the manner in which clusterstion, andp is the close-packed density. This method, which

develop. we introduced in an earlier papgt0], is a simple way to
We begin with a number density fiejd a flow velocity  model the incompressibility of the system at high densities

field u, and a temperaturé] field T. These are related by a [11].

standard set of hydrodynamic equations for granular materi- We evaluate our equations in two dimensions using a

als, introduced by Haff8]: finite-difference Runge-Kutta method, on a square lattice
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FIG. 1. The evolution of the average temperature of the system time
over time for three different values of the inelasticity parameter

on a log-log plot. Note that in our simulations all variables are FIG. 2. The Iogarithmic _ deri_vative of T(t); that' is, '
considered dimensionless. d(log,oT)/d(log;qt). This derivative gives the slope of the lines in

the first graph, or equivalently, the exponent of the power-law decay

with periodic boundary conditiongSee Ref[12] for more rate. Despite appearances, the curves on the right side of the second
- raph are approaching maxima, not asymptaf€se y=50 curve

details) The lattice spacing is chosen to be large enough S%oes not converge to a constant value even thraegt000, which

that each site contains a number of grains, and we can Cori]s' as long as our simulations have ruithe inset shows that the

sider the d_e_n_sity to be_a_l continuous variable. We start with .. - power-law decay ratée., the minima of each curve in
random initial ~ conditions p=0.1+0.00T4(z,x), u, the main graphapproaches the predicted value-o2 as the system
=ry(z,x), uy=r3(z,x), and T=1+0.1ry(z,x), where pacomes more elastic, 383

ri(z,x) are random numbers chosen betweeh and 1. The

model’s other parameters for the data presented herggare . .
=25, kg=1, U=4x 10%, py=0.2, andy taking on several takes for the temperature to reach its fastest decay rate. Fig-

different values. All numbers given here are in dimensionless'™® 3 s_h_ows that this onset time decreasgs with respect to the

units[13]. Our time step in these units ist=10"3 'n?[a;tgty parameter as ar\]_powehr law \II(V'_th agﬁexpt;nent of
We begin with a system that is 8464 in size. The homo- [; j ¢ r?.e may corr:p?rel_t '.f t(:ht € wor Ide[th]’tvtvh ere i

geneous state with which we initialize our system is alread )y matching asymptotic imits they conciude that the onse

a solution to the above equations. In this initial homogeneou Ime of instability depends on the inelasticity parameter as a

cooling state, the velocity and all gradients vanish, and th ower law with an exponent of 2, in the dilute, elastic

o ; - imit.
temperature decays with time due to the inelasticity. Equa- — . . : .
tion (1) reduces to The first instability that is predicted to dominate the ho-

mogeneous solution is a hydrodynamic shearing mode: two

T3 — : T
p Y175 (4)

which yields Haff’s cooling law T(t)=T(0)(1+t/ty) 2.
This state is seen universally in simulatioffsd—17, but
only initially, for it is unstable to hydrodynamic modé4],
resulting in a long-range shear flow followed by the cluster-
ing instability mentioned above. .
Figure 1 shows the decay of the average temperature as
function of time in our simulation for three different values
of the inelasticity parametey. The initial decay approxi- i
mately follows the predicted- 2 exponentFig. 2), while for
later times the temperature decays at a slower rate as th \ih.\
instabilities agitate the systefid5,16. In the limit of low
inelasticity, the maximal rate of decay more closely ap- 5 10 1520 25 30 40 50
proaches Haff’s predicted inverse-square behatfay. 2). v
(Note, however, that the temperature will not decay at all in - FiG. 3. The time at which the decay rate of the temperature
a completely elastic systejnin more inelastic systems, the reaches maximum, as a function ¢f The errors are rounding
hydrodynamic instabilities kick in sooner and compromiseerrors due to the finite sample rate. The onset time seems to depend
the homogeneity of the system. One could characterize then the inelasticity parameter according to a power law with expo-
time it takes for the instabilities to emerge by the time itnent—1.30+0.02.
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FIG. 4. Aflow diagram fory=50 att=450. Each arrow repre-
sents the average velocity of four lattice sites to improve readability.

bands of material moving in opposite directions. This has FIG. 6. The density distribution for a large (12828) system
been seen in several molecular dynamic simulatjddsl7;  at several times during its evolution.

Fig. 4 shows how it has developed in our system as two

horizontal shear bands. Figure 5 shows that our system deple to see this behavior in the smaller system as well, where

velops a clustering instability as well. Note that the singlethe single cluster interacts with itself through the periodic
cluster takes on a compact shape, which is surprising givegoundaries.

that there is no surface tension in our model. If clusters are Finally, to demonstrate that this clustering instability is
supposed to grow by accretion, then one would expect ghe result of the inelastic parameter, we compare the width of
ramified structure. If we consider a larger system, as in Figthe density distribution for inelastic systems with the distri-
6, we find that several compact clusters form in the sam@ution for the elastic case=0 (Fig. 7). In the absence of

manner as that in Fig. 5. As time goes on, however, thesgelasticity, the density distribution collapses to a delta func-
clusters reach out to their neighbors, stretching into the morgon, indicating complete homogeneity.

stringlike forms seen in simulatio]. In hindsight, we are Our results show that the shearing and clustering instabili-
ties, identified by Goldhirsch and Zanetti using a simplified
/P, version of the above equations, exist in the complete nonlin-
-
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FIG. 7. The width of the density distributioné.e., pmax
—pmin) for several values ofy, including the elastic casg=0.
Notice that the density distribution is collapsing to a delta function
in the elastic case, approaching complete homogeneity, while the

FIG. 5. The density distribution for theg=50 system at time inelastic systems show broadening density distributions due to the
t=100. clustering instability.
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ear granular hydrodynamic equatiofis. Haff's cooling law  the proximity of its neighbors, or because of effects due to its

is obeyed in the limit of small inelasticity, but, in general, theinpreasing surface size. One can imagine that the behavior of
instabilities become relevant before the system has a chand@is system could change as we alter the total amount of
to completely homogenize. The power-law dependence ofass in the system.

the onset time for these instabilities on the inelasticity, and \\e thank Professor Todd DuPont for his assistance in

the —4/3 exponent in particular, are interesting; we have noonstructing our simulations, and Professor Heinrich Jaeger,
found any reference to these in the literature. Also interestingrofessor Sidney Nagel, and Professor Thomas Witten for
is the way in which these clusters develop from compachelpful conversations. This work was supported by the Ma-

structures into networks that span the system. It is not cleaerials Research Science and Engineering Center through
whether an individual cluster begins to stretch out because aérant No. NSF DMR 9808595.
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