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The characterization of the “most connected” nodes in static or slowly evolving complex networks has
helped in understanding and predicting the behavior of social, biological, and technological networked sys-
tems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties.
However, recent empirical research of large dynamic networks (characterized by irregular connections that
evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even
when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the
connections in these systems are not driven by preferential attachment or other known mechanisms. We present
an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality
phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp

transition from a base pure random walk scheme.
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I. INTRODUCTION

The modern study of social networks largely presupposes
static or slowly evolving complex networks, as clearly indi-
cated by an extensive review of the pertinent literature [ 1-6].
In the social and behavioral sciences, this static perspective
of networks has generated a wide spectrum of formal repre-
sentations and tools for measuring structural and locational
properties of social networks (e.g., centrality and prestige),
social network roles and positions (e.g., structural equiva-
lence), and local (subgraph) structures. Statistical models of
static networks are prevalent [1,2]. The study of networks
has been developed beyond the social sciences by a substan-
tial number of papers that have extended the study of univer-
sal properties in physical systems to complex networks in
social, biological, and technological systems; these recent
advances have generated an extensive research effort in un-
derstanding the effect of static connectivity patterns on vari-
ous dynamical processes occurring on top of networks [7].
One of the most important concepts in complex network
studies is network centrality, which characterizes the “most
connected” nodes in static complex networks [1,2]. Among
other things, the concept of network centrality has led to the
study of “scale-free networks” [8], where the degree central-
ity of nodes is distributed according to a power-law or other
long-tail distribution, implying the existence of highly con-
nected nodes called hubs [4,8]. The leading explanation for
this uneven distribution of connectivity, present in many real
networks, is based on growth and preferential attachment
mechanisms, in which the structural changes of real net-
works are governed by the dynamical evolution of the sys-
tem (see [8] and its many variants [9]). The long-tail charac-
terization of complex networks has helped in understanding
and predicting the behavior of social, biological, and techno-
logical networked systems, including their robustness against
failures [10,11], vulnerability to deliberate attacks [10,12],
and diffusion properties [7,13]. This static network centrality
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perspective has also led the discussion of strategies for im-
munizing particular individuals to reduce disease propaga-
tion [14—17], advertising to “opinion leaders” [18], and tar-
geting central individuals in terrorist networks [19].

The analysis of evolving social networks has long been
regarded as a “Holy Grail” of network scientists [1,2,20]. A
number of models, mostly theoretical with limited empirical
backing, have been considered for analyzing longitudinal so-
cial network data [21,22], with networks that change either at
discrete time points [23-26] or continuously over time
[27-29]. The complex network community has also been in-
terested in the analysis of these dynamic networks; their re-
search has mainly examined various mechanisms of network
formation (e.g., “preferential attachment” and its variants
[3,9]), and the evolution of aggregate properties of the net-
work at the macroscopic and mesoscopic levels (e.g., net-
work size, average degree, small-world characteristics, or
community structure [30,31]).

While some of the above studies allow their networks to
change, in most cases the evolution is assumed to happen
more slowly than any dynamical processes occurring on the
network. Real network connections, however, are often more
fluid than this; even when there exists an underlying fixed
topological structure, connections between nodes can adap-
tively become active or inactive over time [20]. Consider-
ation of the dynamical interplay between the state and the
topology of the network is pertinent to a wide variety of
network types. Examples include travel on a transportation
network, message exchanges over communication networks,
interactions between molecules that can bind to each other,
and the switching of genes “on” and “off”: all are networks
with an underlying structure that can change quickly and
adaptively with respect to the state of the network, and
whose changes are relevant to the behavior and functionality
of the system. The generality and broad implications of adap-
tive and dynamical wirings in real complex networks has
been leading to a rapidly growing study and much interest
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from social scientists, physicists, and biologists (see reviews
of recent advances in [32,33]). This mostly theoretical re-
search has revealed a number of new approaches and insights
including self-organization of adaptive networks [34-36],
contact processes and epidemiology on adaptive networks
[37-39], and social games on adaptive networks [20,40,41].

Despite these important theoretical advances, there have
been very few empirical studies related to the dynamics of
large-scale network connections, or theoretical models that
are validated and informed by empirical results [42-44].
Clearly, the study of data collected from real-world time-
dependent networks, accompanied by theoretical models
which address and reproduce the properties of said networks,
will provide new, and perhaps fundamental insights into the
mechanisms of dynamic networks. For example, the experi-
ments detailed in Ref. [42] detected a dramatic time depen-
dence in network centrality and the role of nodes, something
that is not apparent from static (i.e., time-aggregated) analy-
sis of node connectivity and network topology. These experi-
ments studied the time-dependent structure of a large-scale
email network of over 57 000 users, based on data gathered
over 113 days from log files maintained by the email server
at a large university. They found, among other things, that
the daily networks (as well as the total aggregate network)
were scale-free, but the “hubs” (that is, the most well-
connected nodes) of these networks changed from day to
day. In other words, a node which is among the most con-
nected on one day, might only have a couple links the fol-
lowing day (popular today, anonymous tomorrow), and may
not even be among the hubs of the aggregate network. This
phenomenon, called dynamic centrality, is not accounted for
by the standard explanation of hub formation: normally, hubs
in networks develop in a system where popular nodes tend to
attract more links (a process called preferential attachment),
so that when one particular node becomes slightly more
popular than the rest, it attracts slightly more links from
other nodes, making it more popular, and so forth in a pro-
cess of positive feedback. This process typically works over
a long period of time, as news of a node’s new “popularity”
is allowed to disseminate through the system before the next
connection is made. In Ref. [42], however, hubs develop
over the course of a single day, and vanish just as quickly:
too fast for such a process to occur. Thus, the implications of
dynamic centrality are in sharp contrast to previous complex
network research, which depend on such preferential
attachment-type mechanisms to create power-law distribu-
tions in empirical complex networks. This result draws atten-
tion to the inherent dynamic nature of adaptive networks
which has long been neglected in the literature [32]. Similar
results [43] were found in the interactions caused by the
spatial proximity of personal Bluetooth wireless devices, re-
cording the interactions between pairs of students over the
period of 31 days. Results that are consistent with dynamic
centrality behavior have also been seen in the social dynam-
ics of free and open-source (FLOSS) development projects
[45], peer prestige in academic hiring networks [46], trading
networks [47], protein-interaction networks [48], and tran-
scriptional networks [49]. The availability of complete (i.e.,
nonsampled) data that tracks the temporal dynamics of the
interactions within the network will allow further study of
dynamic centrality.
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The existence of dynamic centrality and a dynamic inter-
action structure has strong implications for existing work
related to the attack and error tolerance of complex networks
as well as in network transport. Research in epidemics has
suggested that an effective disease or computer-virus preven-
tion strategy would be to identify and vaccinate the high-
degree nodes of a network, which would inhibit the spread of
infection [14—17]. Similarly, “popular influencer” marketing
techniques (closely related to word-of-mouth or viral market-
ing) are based on the premise that focusing marketing activi-
ties on the hubs of social networks increases the likelihood
of a cascading adoption of products or services, forming a
type of social epidemic [18]. The underlying assumption of
both models is that the network topology is basically static: a
node which is well-connected or popular now will continue
to be a hub later in time. In a dynamic network, however,
well-connected nodes can quickly become only weakly con-
nected (or even disconnected) tomorrow, which invalidates
such strategies. Thus, the existence of dynamic centrality
calls for a radical rethinking of the interplay between link/
structural dynamics and the dynamical processes underlying
the time-dependent complex networks, and may call for
modified strategies in predicting and preventing (or encour-
aging) epidemics.

Our paper contributes to the understanding of adaptive
and dynamic networks by demonstrating an approach to ex-
plain and reproduce real world dynamic centrality phenom-
ena. More specifically, we will investigate the type of net-
work seen in Refs. [42,43], which we will call dynamic
scale-free (DSF) networks; these are a series of scale-free
networks with a scale-free aggregate and dynamic centrality.
We will show that DSF networks arise from a series of
vertex-reinforced random walks on a finite scale-free net-
work (called the underlay), governed by a “limited”
preferential-attachment reinforcement rule—limited in the
sense that, when making a connection, a node only takes into
account the popularity of its neighbors in the underlay.

The study of random walks on graphs, and reinforced
random walks in particular, has a long fascinating history in
its own right [50,51]. In the context of social and complex
networks, the nature of random walks and diffusion over
small-world and scale-free networks is also a much investi-
gated topic [52-59]. Random walks have been used in ana-
lyzing search and navigation on networks [60], calculating
the “betweenness centrality” of nodes in a network [61], ex-
tracting community structure from a network [61], and sam-
pling a large network as a means of estimating its topological
properties [62,63]. The close interplay between the degree of
a node and the proportion of time visited by a uniform ran-
dom walk is a well-known result [50], and has also been
examined for various real world networks [64]. This body of
literature largely focuses on the behavior of nonreinforced
random walks on static network topologies. In contrast to
dynamics on networks, a different approach for modeling the
dynamics of networks, which uses reinforced random walks
or other stochastic processes that incorporate reinforcement
mechanisms, has been considered [20,22]. Most pertinent to
our study are models of dynamic networks where individuals
choose whom to interact with depending on how “popular”
their choice is [20,28]. Despite these theoretical advances,
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application to real world dynamic networks has been limited
to parameter estimation with very small networks that are
observed at several time points [22]. Here we broaden the
scope of this research in several distinctive ways. First, to the
best of our knowledge, the use of a reinforced random walk
has not yet been used as a mechanism of dynamical network
connectivity that is informed and supported by actual high-
frequency measurements of large-scale social network link
dynamics. This shift in perspective leads to new insights in-
cluding evidence that nonreinforced random walk schemes
cannot serve as a plausible explanation for experimental data
of dynamic networks, in contrast to reinforced random walk
schemes. Second, random walk mechanisms (or other sto-
chastic models) have not been used so far to study real-world
dynamic centrality phenomena. Finally, new analysis meth-
ods, including various “ranking” and “centrality overlap”
measures, are incorporated to facilitate and enable effective
evaluation of models against large-scale data.

II. MODEL

In our approach we start with the aggregate network,
which is called the underlay; it is reasonable to assume that
the aggregate network represents the long-term pattern of
contact between individuals, which is often well approxi-
mated by a power-law distribution [3]. Underlays are gener-
ated using the Barabdsi-Albert algorithm [8] with parameters
mo=>5 (initial number of nodes; also the minimum degree of
every node in the underlay) and N=1 000 000 (the size of
the network). We then generate a series of DSF networks
using a vertex-reinforced random walk upon this underlay
network: starting from a randomly chosen node, we add
weight (according to a scheme described below) to the ver-
tices every time they are visited, constantly altering the jump
probabilities so that the walk will tend to revisit vertices
already visited [20,51]. This proposal is inspired by the way
messages on actual communication networks are part of
larger-scale conversations. For instance, suppose Alice sends
an email to Bob, who then responds to Alice and also for-
wards her message to Claire. Claire could in turn either for-
ward it to someone new, reply to either Alice or Bob, or do
nothing. Assuming these actions are roughly equal in likeli-
hood, there is a greater probability that Claire sends an email
to either Alice or Bob, than to some other specific individual;
thus, people who are already part of the email chain are more
likely to become part of the chain again. Here, each “daily”
network is a subnetwork of the underlay, built on top of the
underlay via the node-reinforced random walk mechanism.

The specific algorithm is as follows: starting with a ran-
domly chosen node, we consider that node’s neighbors i in
the underlay, each neighbor being weighted according to

wi=1+CV,, (1)

where V; is the number of visits the node has received so far,
and C is a parameter of the model. Neighbor i is then chosen
as a target with probability II;=w;/Zw; Once a target is
chosen, the link between the current node and the target is
added to the sub-network, the algorithm steps to the target,
and the process continues until the chain reaches the pre-
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FIG. 1. A log-log plot of the cumulative degree distributions of
daily networks, averaged over 25 days, built with single chains of 1
million steps: each histogram shows the probability that a member
node of the daily network has degree k or larger. All curves show
power-law behavior; the inset shows the difference between the
power-law exponent of each daily network’s histogram, and the
exponent of its underlay (approximately —1.9, though a different
underlay was used for each value of C).

scribed number of steps S. The parameter C captures the
tendency of the random walk to revisit vertices—that is, the
strength of dynamic preferential attachment. When C=0, one
has a pure (i.e., unreinforced) random walk, a case we will
refer to as a control, to demonstrate the importance of pref-
erential attachment to our results. It should be noted that the
vertex-reinforced random walk is known [51] to have signifi-
cantly different behavior from the pure random walk. For
example, it is well known that in a pure random walk the
probability of visiting a particular node becomes propor-
tional to the degree of the node, after log N steps. This is not
so for vertex-reinforced random walks which can become
“trapped” within a particular subnetwork [51]: nodes within
the subnetwork are visited frequently while nodes outside the
subnetwork, even high-degree nodes, remain unvisited. This
effect is critical to this model’s ability to recreate dynamic
centrality, but from a practical point of view it can be too
powerful, trapping the walk in a very small subnetwork
(even one of only two points). To mollify this effect some-
what, we modify the vertex-reinforced rule to prohibit links
from being traversed two times in a row: nodes and links can
be revisited multiple times during the simulation, but a walk
may not jump immediately backward to the node it came
from.

III. RESULTS AND DISCUSSION

We will now show that the above reinforcement scheme is
able to create scale-free networks with dynamic centrality
and a scale-free aggregate (i.e., the underlay, scale-free by
construction), reproducing the main qualitative features of
DSF networks seen in [42,43]. We begin by constructing
daily subnetworks with S=1 million steps atop underlays of
N=1 million nodes. Figure 1 shows the cumulative probabil-
ity degree distribution (averaged over 25 daily runs) for the
cases of no (C=0), weak (C=1), or strong (C=10) reinforce-
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FIG. 2. The Top-2% overlap, as defined in the text, as a function
of the number of steps S in the daily network, for various values of
C. The overlap for C>0 appears to increase at a much slower rate,
suggesting that the highly connected nodes in the underlay are only
modestly represented in the daily networks.

ment. All three distributions show power-law behavior. How-
ever, the networks with reinforcement (C>0) have smaller
slopes and longer tails, which suggests a more heterogeneous
degree distribution and a more pronounced scale-free behav-
ior. Furthermore, if we fit the histograms to a power-law
Ax™¢, the exponent « for C=0 is very close to the power-law
exponent (a,~2) of the underlay [65], suggesting that the
random-walk network is merely taking on the scale-free na-
ture of the underlay. The inset shows this more clearly: con-
sidering 25 daily networks constructed for each value of C,
we fit the cumulative histogram to a power law, found the
exponent «a, for each, and subtracted the exponent «, of that
network’s underlay. (In this case, we used three different
underlays, one for each value of C.) We see that the C=0
curve decays at the same rate as the underlay (or even a little
more quickly); the difference is a;—a,=0.06 =0.02. By con-
trast, the C>0 cases have a;—a,=-0.76 £0.01 (for C=1)
and —0.73 =0.04 (for C=10). With reinforcement, the daily
exponents are smaller by about 0.75, resulting in a slower
rate of decay and relatively more nodes of high degree. Note
also that these results are relatively consistent from day to
day.

Having shown that the subnetworks created by our model
are scale-free subnetworks of a scale-free aggregate, we now
demonstrate that they exhibit dynamic centrality. Following
[42,43], we define the “Top-n overlap” for two subnetworks
of a given underlay as follows: after ranking the nodes ac-
cording to their degree in each subnetwork, we count the
number of nodes which appear among the top n nodes in
both networks, dividing the count by n to express it as a
fraction (or percentage). If the overlap is close to 100%, then
the two subnetworks’ hubs are largely identical; thus we ex-
pect that daily subnetworks exhibiting dynamic centrality
(where hubs change from day to day) have a relatively low
Top-n overlap, both with the underlay and with each other.
(The exact method and formula for calculating the overlap,
which deals with the issue of ties for nth place, is described
in the Appendix.)

We first used this “top n overlap” to compare individual
daily networks with their underlays. In Fig. 2, we see that the
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FIG. 3. The distributions of the Top-2% overlap between 10
daily networks and their common underlay (the peaks labeled “un-
derlay”), and between the 45 pairs of those ten networks (labeled
“cross”). The bar graphs were constructed by binning, with a bin
size of 0.01%. The results suggest that “local” hubs vary greatly
from day to day.

overlap of the top 2% of nodes (i.e., the 20 000 nodes with
the highest degree) is dramatically smaller with the introduc-
tion of dynamic preferential attachment, once the walk ex-
tends further than roughly 200 000 steps, and the overlap
decreases monotonically as the preference weight C in-
creases. While the overlap of the C=0 case grows steadily as
the random walk fully explores the underlay, the overlap for
C>0 increases at a much slower rate, suggesting that the
highly connected nodes in the underlay are only modestly
represented in the daily networks.

In Fig. 3, we look at the distribution of the Top-2% over-
lap between the underlay and 10 different daily subnetworks,
generated with walks of S=1 million steps, and for C=0, 1,
and 10; we also look at the Top-2% overlap for the 45 pairs
one can make among the ten daily networks for each value of
C. All the distributions are sharply peaked, showing that the
overlap does not vary much from day to day, and the overlap
is again greatly decreased by the introduction of reinforce-
ment, even from day to day. This demonstrates that the set of
hubs of the daily network varies greatly from day to day, a
result consistent with empirical dynamic scale-free networks
[42,43].

An explanation for dynamic centrality in the C>0 case
can be found by examining the number of unique nodes
which are visited by the random walk, which is equivalent to
the number of nodes in the resulting daily network, as is
done in Fig. 4. For the pure random walk (C=0), the under-
lay network (due to its small-world nature) is rapidly covered
as the number of steps S increases, as is seen in the inset. The
Top-2% overlap (shown in the main portion of the figure) is
closely correlated with the number of nodes in the daily net-
work, so as the daily network grows, it increasingly adopts
the underlay’s hubs as its own, ruining dynamic centrality
because the hubs remain constant from day to day. With
reinforcement (C>0), however, the random walk is more
likely to revisit nodes it has visited before, and so it takes
much longer to explore the underlay. This slow rate of ex-
ploration appears to be the primary reason that the overlap is
suppressed in Fig. 2; in fact, Fig. 4 shows that if we compare
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FIG. 4. The importance of the number of unique visited nodes.
The inset shows the fraction of nodes in the underlay that are in-
cluded in a daily network generated with different numbers of steps
S and with C=0,1, 2, 5, and 10. Higher percentages of unique
visited nodes correspond monotonically to lower values of C. The
main graph shows the same curves plotted versus the Top-2% over-
lap instead of the number of steps. The kink in the C=0 curve is a
finite-size effect.

daily networks with the same number of nodes, rather than
the same number of steps, reinforcement actually results in a
slightly higher overlap.

We have so far looked at the behavior of the top 20 000
nodes in the underlay and their modest role in the daily net-
works, but we can also compare the rankings of all nodes in
the underlay with their ranking in the daily subnetworks. We
did so as follows: for a given underlay, we ranked each node
according to its degree, with the most highly connected node
being given rank 0; nodes with the same degree were
grouped together and given a rank which was the average of
the range they covered. We then generated 10 daily subnet-
works of S=1 million steps each, and averaged the rank each
node had over all ten subnetworks, dealing with ties in the
same way as above. We did this for C=0 and C=10, and Fig.
5 shows the underlay rank plotted versus the average daily
rank so calculated. When multiple nodes have the same un-
derlay rank, the average daily rank has itself been averaged
over all nodes with the same underlay rank. In the C=0 case,
we see that the underlay and daily ranks have a strong posi-
tive correlation: the daily rank of a node always depends
strongly on its rank in the underlay. The C=10 curve is much
different: the average daily rank is roughly constant, once we
consider nodes below the top 50 000 (5%) or so. In addition
to the average daily rank, we can also consider the best (i.e.,
minimum) daily rank that a node reaches over the ten daily
networks; in doing so, we see (in the inset to Fig. 5) that
every node in the C>0 case has an opportunity to be among
the top 1500 nodes (0.15%) in some daily network; without
preferential attachment, most nodes cannot crack the top
10 000 (1%). The C>0 case is extremely egalitarian in this
regard: any node, even those with the smallest degree in the
underlay, can be among the most important nodes in some
daily network. This behavior agrees with the empirical re-
sults reported in [42,43].

One last empirical result seen in [42] involves the aggre-
gate of M daily subnetworks, which are formed by connect-
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FIG. 5. Comparison of the underlay network with daily net-
works. We show the average rank of a node in ten daily subnet-
works (with 1 million steps) versus their rank in the underlay net-
work; nodes with higher degree have lower rank, and the top-
ranked node has rank 0. In the case of ties, all tied nodes are
assigned the rank that is the average value of the range they cover.
The inset shows, not the average, but the best daily rank that node
has over the 10 days. The C>0 case is remarkably egalitarian—
every node has an opportunity to become a hub in some daily
network.

ing two nodes together if they are connected in any of the M
subnetworks. Given their independence and random starting
points, the aggregate of M daily networks must eventually
converge to the underlay as M grows large, but whether this
convergence occurs over a particular time scale M, or
whether it converges in a scale-free manner, is an interesting
question. One way to measure this convergence is by calcu-
lating the Top-2% overlap O between the aggregate and the
underlay, and subtracting this from 100%; if this quantity
(called the “dissimilarity” reaches zero, then both the aggre-
gate and the underlay both have the same set of hubs, and are
roughly (though not precisely) equivalent. Figure 6 shows
this dissimilarity as a function of the aggregate size M. For

1 — LI ———

average dissimilarity 1-O

0.1 - .
E N=50k - ]
- N=IM ]
N=2M - i
0.01 B ‘
1 10 50
number of days M

FIG. 6. Dissimilarity of networks aggregated over times ranging
from 1 to 50 days. Dissimilarity is defined as the Top-2% overlap O
[Eq. (2)] subtracted from 100%, and is shown for both pure random
walks (C=0) and strongly weighted walks (C=10). We show re-
sults for networks with 50 thousand, 1 million, and 2 million nodes
to show how the system scales; all walks have as many steps as
there are nodes (S=N).
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the pure random walk case (C=0), the dissimilarity de-
creases exponentially (~e ™Mo, with M,=~-7.5), so that af-
ter 20 days the top nodes in both networks are basically
identical. In contrast, the aggregate generated with a strong
dynamic preferential attachment (C=10) has a dissimilarity
which decays much more slowly, and possibly without a
characteristic time scale. This is the behavior seen in empiri-
cal DSF networks [42,43], and hints at a “multiscale” struc-
ture for the network dynamics, where networks at each time
scale form scale-free topologies while the specific links in
existence vary dramatically between observation time scales
as well as over time. To alleviate concerns that this disparity
may be a finite-size effect, we include data in Fig. 6 for
networks of N=50000 nodes and N=2 000 000 nodes
(where S=N in all cases): increasing the network size does
nothing to change the C=0 case, and actually results in an
even slower rate of decay for the reinforced C=10 networks.

IV. CONCLUSION

We have embarked on a research program designed to
develop universal models that can recreate empirically ob-
served phenomena in dynamic complex networks. We have
shown that, using a suitable reinforced random walk on a
“long-term” underlay network, one is able to produce instan-
taneous networks which reproduce qualitatively characteris-
tic features of real world dynamic networks. This includes, in
particular, the construction of scale-free subnetworks of a
scale-free “underlay” network, whose local hubs substan-
tially differ from subnetwork to subnetwork and from those
of the underlay. We have presented evidence that dynamic
preferential attachment (as opposed to a pure random walk)
is a necessary requirement of dynamic scale-free networks:
the preferential attachment mechanism limits the walk’s ex-
ploration of the network, which gives early visited nodes
higher ranks than they would have with a more random tra-
versal. We hope our model will stimulate further empirical
and theoretical work, and provide a framework for analyzing
the influence of link/structural dynamics on dynamical pro-
cesses on complex networks.
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APPENDIX: CALCULATING THE TOP-n OVERLAP

If there are no ties for nth place in the network, then the
top-n overlap of subnetworks A and B is given by the for-
mula

1

0= ;|Alop N Btop > (A1)
where Ay, is a set of the top n nodes in network A, as B, is
for B, and |-| denotes the number of elements in a set. Given
the finite size of our networks, however, there are generally
large groups of nodes with the same degree, making the
choice of the top n nodes somewhat arbitrary. To account for
this, we modify Eq. (Al) to prorate those nodes which are
tied for the nth slot, as follows: let @ and b be the degree of
the nth highest node in networks A and B, respectively. We
define the set A~ to be the set of nodes in A with degree
greater than a, while A_ is the (guaranteed nonempty) set of
nodes in A with degree equal to a; we define B~ and B_
similarly. Imagine constructing the list Ay, of the top n
nodes: it will automatically contain the entire set A~, and
will have room for n—|A~| of the nodes in A_. If we choose
nodes at random from A_ to fill those available slots, then
each node from A_ has probability

n—|A
fa= # (A2)
of appearing in the list A,,,. (The same applies for network
B.) Thus, when calculating the overlap between A and B, we
will count each node in A_ and B_ as being worth a fraction
of a regular node—f, and fj, respectively—define the modi-
fied overlap O(A,B) to be

1
0= ;[|A> N Bo|+faA- N B-|+ f3lA~ N B_|

+ fafslA= N B_[]. (A3)

Note that if there is no tie for nth place in either network,
then fy=fp=1, A,p=(A~UA.), and B,,=(B-UB.); and
Eq. (A3) reduces to the simpler Eq. (A1) described above.
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