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Abstract

Larval zebrafish exhibit a variety of complex undulatory swimming patterns. This repertoire

is controlled by the 300 neurons projecting from brain into spinal cord. Understanding how

descending control signals shape the output of spinal circuits, however, is nontrivial. We have

therefore developed a segmental oscillator model (using NEURON ) to investigate this system.

We found that adjusting the strength of NMDA and glycinergic synapses enabled the

generation of oscillation (tail-beat) frequencies over the range exhibited in different larval

swim patterns. In addition, we developed a kinematic model to visualize the more complex

axial bending patterns used during prey capture.

r 2004 Published by Elsevier B.V.
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1. Introduction

The spinal cords of vertebrate animals contain segmental oscillators, or central
pattern generators (CPGs), that can produce rhythmic movements. The operations
see front matter r 2004 Published by Elsevier B.V.
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of these spinal CPGs are best understood in lower vertebrates, such as lamprey and
Xenopus, where they are used for undulatory swimming [5,13,24]. Control signals
descending from brainstem to spinal cord have also been studied extensively in these
and other lower vertebrates, such as goldfish and zebrafish. Their lack of a
corticospinal tract avoids a degree of complexity that is present in mammals. The
functioning of descending control systems in higher vertebrates has been difficult to
understand. Studies of lower vertebrates should reveal conserved principles by which
these systems operate. The larval zebrafish takes vertebrate simplicity to an extreme:
the decreased numbers of neurons allow exact identification of many cell types in
both brainstem and spinal cord [1,16,17,19]; this in turn provides major experimental
and modeling advantages.

One important aspect of lower vertebrate locomotion is the regulation of
swimming speed, which is often correlated with the frequency of alternating
left and right contractions of the axial muscles of the trunk or tail, termed tail-beat
frequency (TBF). In a steady-swimming fish TBF is generally equal to the
oscillation frequency of the spinal CPGs, so by understanding the modulation of
CPG frequency in spinal cord we can understand a major element of the
control of swim speed. In goldfish, lamprey, and other fishes, swim frequency
can be modulated by stimulation of the midbrain locomotor region or
bath application of NMDA; it is also known that serotonin, acetylcholine,
dopamine, and other neurotransmitters influence the CPG’s oscillation frequency.
However, the identities and locations (in brainstem or spinal cord) of the cells
involved in swim frequency control are unknown. Larval zebrafish may provide
insights into this problem because they exhibit distinct swim patterns that span a
broad range of tail beat frequencies, ranging from 25 to 75Hz [6]. A critical
unknown is whether or not the distinct larval swim patterns (slow, burst, and capture)
are controlled by distinct control systems and/or specific neurotransmitters [3,21].
Modeling the different types of swimming behavior using a combined neural and
kinematic model can shed light onto the presence and relevance of different motor
control elements.

The functioning of spinal networks that underlie locomotion in fishes and
tadpoles has been extensively modeled (see e.g. [7,8,13,23]). We created a
zebrafish neural model, based on previous Xenopus spinal network models,
of the CPGs in the larval zebrafish spinal cord, incorporating known
properties of the oscillators underlying swimming [25]. The spinal interneuron
types in zebrafish [14] are likely homologous to those in both Xenopus and
lamprey [10]. We explored the control of TBF, and found that by altering
the strengths of AMPA, NMDA and glycinergic-like synapses (all known
to be present in lower vertebrate spinal cords), we were able to generate TBFs
that spanned the range of speeds observed during burst and slow swimming
behaviors. We also created a simple mechanical or ‘‘kinematic’’ model (that can be
driven by the neural model) to visualize how the spinal neural activity might be
transformed into larval behaviors. Our ultimate goal in creating this neurokinematic
model is to introduce a tool for testing theories of descending motor control in the
larval zebrafish.
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2. Methods

Fig. 1 shows the structure of our neural model, which is a simplification of the
larval spinal circuitry [14] incorporating the minimal elements required to generate
rhythmic, propagating alternating activity. Each segmental oscillator consists of two
neurons, with NMDA and AMPA-like autosynapses, which are connected by
glycinergic synapses. An oscillator can be triggered with a single excitatory pulse to
one cell, followed by a single pulse to the other cell several milliseconds later (7ms in
our simulations). Individual oscillators are connected into a 25-segment chain
(corresponding to the approximately 25 segments in the zebrafish spinal cord), with
nearest-neighbor descending excitatory synaptic connections; the entire chain can be
started merely by triggering the head segment.

We use cells with the standard Hodgkin–Huxley channels provided by the
NEURON software package: persistent potassium (ḡK ¼ 0:036 S=cm2; EK ¼

�77mV), transient sodium (ḡNa ¼ 0:12 S=cm2; ENa ¼ 50mV), and leak (gL ¼

0:0003 S=cm2; EL ¼ �54:3mV) channels. Our synapses are modeled using the
difference of two exponentials, with rise time t1ð¼ 1msÞ and fall time t2: See [9,
p. 182] for details. The three types of synapses we used were AMPA (t2 ¼ 6ms;
E ¼ 0mV), NMDA (t2 ¼ 80ms; E ¼ 60mV), and glycine (t2 ¼ 2ms; E ¼ �80mV).

Our kinematic model is meant to translate the neural signals from the spinal
circuitry into observable kinematic behaviors. To do so, we use a relatively simple
transformation of putative neural output into effects on the radius of curvature of a
line segment representing the trunk of the larva. This model does not take into
account the full physics (e.g., elasticity and hydrodynamics) of the situation;
nevertheless, it does approximate the observed axial kinematics recorded experi-
mentally with a high-speed camera.

Suppose that each segment x is receiving a neural signal F sðx; tÞ at time t from the
spinal circuitry: F s40 for a signal to the right side of the segment, F so0 for a signal
to the left. We suppose that this signal is integrated through exponential synapses, so
Fig. 1. Schematic diagram of the neural oscillator model. The squares represent neurons, and each line

indicates one of three types of synaptic connection: glycinergic (fast inhibitory), AMPA-like (fast

excitatory), or NMDA-like (slow excitatory). Only the first two segments of a 25-segment chain are shown.
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that the signal passing to the muscles is

Fmðx; tÞ ¼

Z t

�1

F sðx; t
0Þ½eðt

0�tÞ=t2 � eðt
0�tÞ=t1 �dt0; (1)

where t1 and t2 are the growth and decay time constants of the synapse (we use
t1 ¼ 6ms and t2 ¼ 8ms in our calculations.) Assuming that the muscle contracts
linearly as a function of Fm; it follows that the radius of curvature of segment x is

Rðx; tÞ ¼ W ðxÞ=Fmðx; tÞ: (2)

W ðxÞ is a function describing the stiffness, or resistance to bending, of segment x: It
takes into account the width of the body (the tail is more flexible, and bends more
than the rostral trunk).

We can feed the output of our neural model directly into this system, but it is also
useful to introduce a (more) artificial signal. We build this signal out of three
components: an oscillatory signal Foscðx; tÞ; which is a series of delta functions
propagating caudally; a bending signal Fbend; which is a tonic signal applied to one
side of all segments at once; and a rostral stiffening signal, which reduces the signal
to the first xinh rostral segments by a factor f inh: The first two components are
responsible for swimming and turning, respectively. The stiffening signal is seen in
larvae during prey capture, where the fish keeps its head relatively still while
adjusting its orientation with its tail. We can write our artificial neural signal as

F sðx; tÞ ¼ ðFoscðx; tÞ þ f bendÞ 

f inh; xpxinh;

1; x4xinh;

(
(3)

where f bend is a constant and

Foscðx; tÞ ¼ f osc

1; x � 2pnt ðmod lÞ;

�1; x � 2pnt þ l=2 ðmod lÞ;

0; otherwise:

8><
>: (4)

The parameter n is the TBF, and l is the length (in number of segments) of the
resulting wave which propagates down the fish.
3. Results and discussion

We began by studying a single segment of the neural model shown in Fig. 1. A
transient trigger pulse to this model initiates sustained alternating activity,
mimicking Xenopus spinal cord, where a transient stimulus produces a sustained
bout of swimming [23]. The first larval-zebrafish specific task was to generate the
range of TBFs used in different swimming behaviors. The frequency of oscillation
was calculated on a half-cycle basis (termed ‘‘instantaneous’’ TBF in [3]). Fig. 2
shows how instantaneous TBF varies with time, with each trace representing the
frequency profile for a specific value of the NMDA synaptic conductance. In all
cases, there is an initial transient period, 15 to 20 cycles long, where the TBF
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Fig. 2. Instantaneous TBF in a single segmental oscillator, for several values of gNMDA: Each point

represents the iTBF for the left neuron; the corresponding points from the right side gives near-identical

results. Oscillators approach a steady-state frequency only after an initial ‘‘wind-up’’ period.

Fig. 3. A density plot showing the steady-state frequency of a single oscillator as we modify the synaptic

conductances gNMDA and gINH; fixing gAMPA ¼ 10�4: All conductances are in mS; and all frequencies are in

Hz. The missing regions in the upper-right and lower-left corners represent nonoscillatory states.
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increases by about a third before settling into an indefinite steady state with constant
frequency. We subsequently re-inspected behavioral sequences, and found varying
degrees of wind-up in some, but not all, experimentally recorded swim bouts [3]. It is
unknown whether the biological and simulational wind-up behaviors are related, but
the phenomenon lasts much longer in the model than in the lab.

To evaluate the range of oscillator or TBFs that might be generated with this
simple model, we tested different combinations of synaptic strengths (conductances).
Varying the strengths of the NMDA and glycinergic synapses was found to alter the
steady-state oscillator frequency (Fig. 3): increasing the NMDA conductance
increased TBF, whereas increasing the glycinergic conductance decreased it. The
AMPA conductance can also affect TBF, but to a lesser extent. Different
combinations of conductances could give rise to the entire range of TBFs observed
in different larval swim patterns, from the slow swim (25–40Hz) to burst swim
(45–75Hz; [6]). This is just one potential means of varying oscillator frequency (or
TBF), implemented in a reduced system (i.e. a two-cell model), but it illustrates how
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a minimal model of larval zebrafish spinal cord, with just a few essential
conductances, can give rise to a range of outputs relevant to the larval behaviors.
In this model, each crossed inhibitory signal results in one post-inhibitory rebound
firing of a single action potential, but to more completely capture slow and burst
swims we will need to incorporate mechanisms that regulate the strength of output of
the motoneuron pools.

We next extended the model to a 25-segment chain of oscillators, creating a kind
of artificial spinal cord that should facilitate quantitative analyses of the influences of
descending signals on spinal network activity. The firing pattern of the model spinal
cord is illustrated in Fig. 4. The firing of segment number 1 shows an alternating left-
right pattern over the duration of the simulation. In successively more caudal
segments, the firing is delayed, matching the general pattern of undulatory
swimming. As in the single-segment model, each segment along the chain showed
a frequency wind-up period. In this model a fixed intersegmental time-delay
(nominally a synaptic delay) was used to establish the phase relationship between
segments, but a more realistic model might include ascending and descending
connections of varying strengths and lengths, as in lamprey [8,18].

The kinematic model of the larval trunk is a complementary tool for exploring
theories of descending motor control. Preliminary work [15] assumed that the fish
was equally flexible from trunk to tail (W ðxÞ ¼ 1 in Eq. (2)), with partial success. By
accounting for the increased flexibility of the tail (e.g. by making W ðxÞ linear),
however, we can better simulate the trunk kinematics observed during slow swims
and J-turns (Fig. 5). J-turns are unique locomotive maneuvers that contribute to the
larval prey-capture behavior [2]. They require repetitive, asymmetric and far-caudal
contractions of axial musculature. This might in principle be achieved by sending an
Fig. 4. Rastergram for a chain of 25 segmental oscillators. Each horizontal line corresponds to a single

oscillator; ticks drawn below each line are for action potentials on the left, and above for those on the

right. Parameters: gAMPA ¼ 10�4 mS; gNMDA ¼ 6
 10�4 mS; gINH ¼ 10�2 mS; gdescending ¼ 10�2 mS:
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Fig. 5. Comparison of a 7-day old larval zebrafish with our kinematic model during a slow swim (left) and

a J-turn (right).
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asymmetric excitatory brainstem signal exclusively to far-caudal spinal cord;
however, a survey of the spinal outputs of zebrafish reticulospinal neurons revealed
no neurons with the requisite arborization pattern [11]. Alternatively, neurons that
selectively arborize in rostral spinal cord (which were observed) might be activated
bilaterally to stiffen the rostral musculature. In conjunction with such signals, other
neurons that arborize along the entire length of spinal cord could then generate far-
caudal contraction. In our model, this is implemented as a bilateral ‘‘inhibitory’’
rostral signal, but this is kinematically equivalent to stiffening the rostral end of the
larva by bilateral excitation of rostral motoneurons.
4. Future directions

As we extend the neural model’s capabilities to produce dynamically varying bend
amplitudes, we hope to produce an increasingly realistic ‘‘artificial spinal cord’’ that
can be used to test ideas of how the larval locomotive repertoire is generated. The
kinematic model is useful here because it provides a first approximation of how
complex neural model outputs might affect axial kinematics. Further extensions of
this model should incorporate known constraints of the larval CNS, such as the
diversity of brainstem and spinal systems involved in swimming and turning
behaviors [14,20,22], and the wide distribution of activity during escape behaviors
[4,12]. By incorporating such constraints, the combined neurokinematic model
should become increasingly useful in generating experimentally testable hypotheses
of descending and spinal control of vertebrate locomotion.
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